Skip to main content

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 348))

Abstract

In this Section the classical lamination theory is described on the basis of Mindlin—Reissner’s kinematics. Hygrothermal effects are included, and a formulation is achieved which can simply specified for specific laminates such as symmetric, quasiorthotropic and quasi-isotropic ones. Furthermore, interlaminar stresses and edge effects as well as some failure criteria and the post-failure behavior with stiffness degradation are considered. Based on antiplane core conditions a sandwich theory is developed, and a procedure is presented for estimating local instability phenomena such as different modes of face layer wrinkling or intracell buckling and failure due to transverse normal stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rammerstorfer F.G.: Repetitorium Leichtbau. Oldenbourg Verlag, Vienna, 1992.

    Google Scholar 

  2. Rammerstorfer F.G., Böhm H.J.: Micromechanics for Macroscopic Material Description; in this book, 1994.

    Google Scholar 

  3. Dorninger K.: Entwicklung von nichtlinearen FE-Algorithmen zur Berechnung von Schalenkonstruktionen aus Faserverbundschalen. VDI-Fortschrittsberichte 18/65, VDI-Verlag, DĂĽsseldorf, 1989.

    Google Scholar 

  4. Reissner E.: The Effect of Transverse Shear Deformation on the Bending of Elastic Plates; J.Appl.Mech. 12, 69–77, 1945.

    MathSciNet  Google Scholar 

  5. Noor A.K., Peters J.M.: A Posteriori Estimates for Shear Correction Factors in Multi-Layered Composite Cylinders; J.Engng.Mech. 115, 1225–1244, 1989.

    Article  Google Scholar 

  6. Reddy J.N.: A Refined Nonlinear Theory of Plates With Transverse Shear Deformations; Int.J.Sol.Struct. 20, 881–896, 1984.

    Article  MATH  Google Scholar 

  7. Başar Y.: Finite-Rotation Theories for Composite Laminates; Acta Mech. 98, 159–176, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  8. Başar Y., Yunhe Ding, Schultz R.: Refined Shear Deformation Models for Composite Laminates with Finite Rotations; Int.J.Sol.Struct. 30, 2611–2638, 1993.

    Google Scholar 

  9. Reddy J.N.: A Simple Higher-Order Theory for Laminated Composite Plates; J.Appl. Mech. 51, 745–752, 1984.

    Article  MATH  Google Scholar 

  10. Heuer R.: Static and Dynamic Analysis of Transversely Isotropic, Moderately Thick Sandwich Beams by Analogy; Acta Mech. 91, 1–9, 1992.

    MATH  Google Scholar 

  11. Lee K.H., Xavier P.B., and Chew C.H.: Static Response of Unsymmetric Sandwich Beams Using an Improved Zig-Zag Model; Compos.Engng. 3, 235–248, 1993.

    Article  Google Scholar 

  12. Reddy J.N., Pandey A.K.: A First-Ply Failure Analysis of Composite Laminates; Comput.Struct. 25, 371–393, 1987.

    Article  MATH  Google Scholar 

  13. Agarwal B.D., Broutman L.J.: Analysis and Performance of Fiber Composites; John Wiley & Sons, New York, NY, 1990.

    Google Scholar 

  14. Böhm H.J., Rammerstorfer F.G.: Micromechanical Investigation of the Processing and Loading of Fibre-Reinforced Metal Matrix Composites; Mater.Sci.Engng. A135, 185–188, 1991.

    Article  Google Scholar 

  15. Hayashi T.: Analytical Study of Interlaminar Shear Stresses in a Laminated Composite Plate; Trans.Japan Soc.Aerosp.Sci. 10, 43–48, 1967.

    Google Scholar 

  16. Pipes R.B., Pagano N.J.: Interlaminar Stresses in Composite Laminates Under Uniform Axial Extension; J.Compos.Mater. 4, 538–548, 1970.

    Google Scholar 

  17. Pagano N.J., Pipes R.B.: The Influence of Stacking Sequence of Laminate Strength; J.Compos.Mater. 5, 50–58, 1971.

    Article  Google Scholar 

  18. Whitney J.M.: Free-Edge Effects in the Characterization of Composite Materials; in “Analysis of the Test Methods for High Modulus Fibers and Composites” ASTM STP 521, American Society for Testing and Materials, Philadelphia, PA, 1973.

    Google Scholar 

  19. Rose C.A., Herakovich C.T.: An Approximate Solution for Interlaminar Stresses in Composite Laminates; Compos.Engng. 3, 271–285, 1993.

    Article  Google Scholar 

  20. Kassapoglou C., Lagace P.A.: Closed Form Solutions for the Interlaminar Stress Fields in Angle-Ply and Cross-Ply Laminates; J.Compos.Mater. 21, 292–308, 1987.

    Article  Google Scholar 

  21. Morton S.K., Webber J.P.H.: Interlaminar Failure due to Mechanical and Thermal Stresses at the Free Edges of Laminated Plates; Compos.Sci.Technol. 47, 1–13, 1993.

    Article  Google Scholar 

  22. Hashin Z.: Analysis of Composite Materials — A Survey; J.Appl.Mech. 50, 481–505, 1983.

    Article  MATH  Google Scholar 

  23. Tolson S., Zabaras N: Finite Element Analysis of Progressive Failure in Laminated Composite Plates; Comput.Struct. 38, 361–376, 1991.

    Article  MATH  Google Scholar 

  24. Chawla K.K.: Composite Materials. Springer–Verlag, New York, NY, 1987.

    Book  Google Scholar 

  25. Brewer J.C., Lagace P.A.: Quadratic Stress Criterion for Initiation of Delamination; J.Compos.Mater. 22, 1141–1155, 1988.

    Article  Google Scholar 

  26. Garg A.C.: Delamination — A Damage Mode in Composite Structures; Engng. Fract.Mech. 29, 557–584, 1988.

    Article  Google Scholar 

  27. Grediac M.: A Finite Element Study of the Transverse Shear in Honeycomb Cores; Int.J.Solids Structures 30, 1777–1788, 1993.

    Article  MATH  Google Scholar 

  28. Starlinger A., Rammerstorfer F.G.: A Finite Element Formulation for Sandwich Shells Accounting for Local Failure Phenomena; Proc. 2nd Int. Conf. on Sandwich Construction, EMAS, Warley, UK, 1992.

    Google Scholar 

  29. Starlinger A.: Development of Efficient Finite Shell Elements for the Analysis of Sandwich Structures Under Large Deformations and Global as Well as Local Instabilities. VDI–Fortschrittsberichte 18/93, VDI–Verlag, Düsseldorf, 1991.

    Google Scholar 

  30. Stamm K., Witte H.: Sandwichkonstruktionen — Berechnung, Fertigung, Ausfiihrung. Springer–Verlag, Vienna, 1974.

    Google Scholar 

  31. Kuhhorn A.: Geometrisch nichtlineare Theorie für Sandwichschalen unter Einbeziehung des Knitterphänomens. VDI–Fortschrittsberichte 18/100, VDI–Verlag, Düsseldorf, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Wien

About this chapter

Cite this chapter

Rammerstorfer, F.G., Starlinger, A. (1994). Lamination Theory and Failure Mechanisms in Composite Shells. In: Hult, J., Rammerstorfer, F.G. (eds) Engineering Mechanics of Fibre Reinforced Polymers and Composite Structures. International Centre for Mechanical Sciences, vol 348. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2702-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2702-5_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82652-2

  • Online ISBN: 978-3-7091-2702-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics