Lamination Theory and Failure Mechanisms in Composite Shells

  • F. G. Rammerstorfer
  • A. Starlinger
Part of the International Centre for Mechanical Sciences book series (CISM, volume 348)


In this Section the classical lamination theory is described on the basis of Mindlin—Reissner’s kinematics. Hygrothermal effects are included, and a formulation is achieved which can simply specified for specific laminates such as symmetric, quasiorthotropic and quasi-isotropic ones. Furthermore, interlaminar stresses and edge effects as well as some failure criteria and the post-failure behavior with stiffness degradation are considered. Based on antiplane core conditions a sandwich theory is developed, and a procedure is presented for estimating local instability phenomena such as different modes of face layer wrinkling or intracell buckling and failure due to transverse normal stresses.


Critical Load Failure Criterion Face Layer Sandwich Beam Honeycomb Core 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rammerstorfer F.G.: Repetitorium Leichtbau. Oldenbourg Verlag, Vienna, 1992.Google Scholar
  2. 2.
    Rammerstorfer F.G., Böhm H.J.: Micromechanics for Macroscopic Material Description; in this book, 1994.Google Scholar
  3. 3.
    Dorninger K.: Entwicklung von nichtlinearen FE-Algorithmen zur Berechnung von Schalenkonstruktionen aus Faserverbundschalen. VDI-Fortschrittsberichte 18/65, VDI-Verlag, Düsseldorf, 1989.Google Scholar
  4. 4.
    Reissner E.: The Effect of Transverse Shear Deformation on the Bending of Elastic Plates; J.Appl.Mech. 12, 69–77, 1945.MathSciNetGoogle Scholar
  5. 5.
    Noor A.K., Peters J.M.: A Posteriori Estimates for Shear Correction Factors in Multi-Layered Composite Cylinders; J.Engng.Mech. 115, 1225–1244, 1989.CrossRefGoogle Scholar
  6. 6.
    Reddy J.N.: A Refined Nonlinear Theory of Plates With Transverse Shear Deformations; Int.J.Sol.Struct. 20, 881–896, 1984.CrossRefMATHGoogle Scholar
  7. 7.
    Başar Y.: Finite-Rotation Theories for Composite Laminates; Acta Mech. 98, 159–176, 1993.CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Başar Y., Yunhe Ding, Schultz R.: Refined Shear Deformation Models for Composite Laminates with Finite Rotations; Int.J.Sol.Struct. 30, 2611–2638, 1993.Google Scholar
  9. 9.
    Reddy J.N.: A Simple Higher-Order Theory for Laminated Composite Plates; J.Appl. Mech. 51, 745–752, 1984.CrossRefMATHGoogle Scholar
  10. 10.
    Heuer R.: Static and Dynamic Analysis of Transversely Isotropic, Moderately Thick Sandwich Beams by Analogy; Acta Mech. 91, 1–9, 1992.MATHGoogle Scholar
  11. 11.
    Lee K.H., Xavier P.B., and Chew C.H.: Static Response of Unsymmetric Sandwich Beams Using an Improved Zig-Zag Model; Compos.Engng. 3, 235–248, 1993.CrossRefGoogle Scholar
  12. 12.
    Reddy J.N., Pandey A.K.: A First-Ply Failure Analysis of Composite Laminates; Comput.Struct. 25, 371–393, 1987.CrossRefMATHGoogle Scholar
  13. 13.
    Agarwal B.D., Broutman L.J.: Analysis and Performance of Fiber Composites; John Wiley & Sons, New York, NY, 1990.Google Scholar
  14. 14.
    Böhm H.J., Rammerstorfer F.G.: Micromechanical Investigation of the Processing and Loading of Fibre-Reinforced Metal Matrix Composites; Mater.Sci.Engng. A135, 185–188, 1991.CrossRefGoogle Scholar
  15. 15.
    Hayashi T.: Analytical Study of Interlaminar Shear Stresses in a Laminated Composite Plate; Trans.Japan Soc.Aerosp.Sci. 10, 43–48, 1967.Google Scholar
  16. 16.
    Pipes R.B., Pagano N.J.: Interlaminar Stresses in Composite Laminates Under Uniform Axial Extension; J.Compos.Mater. 4, 538–548, 1970.Google Scholar
  17. 17.
    Pagano N.J., Pipes R.B.: The Influence of Stacking Sequence of Laminate Strength; J.Compos.Mater. 5, 50–58, 1971.CrossRefGoogle Scholar
  18. 18.
    Whitney J.M.: Free-Edge Effects in the Characterization of Composite Materials; in “Analysis of the Test Methods for High Modulus Fibers and Composites” ASTM STP 521, American Society for Testing and Materials, Philadelphia, PA, 1973.Google Scholar
  19. 19.
    Rose C.A., Herakovich C.T.: An Approximate Solution for Interlaminar Stresses in Composite Laminates; Compos.Engng. 3, 271–285, 1993.CrossRefGoogle Scholar
  20. 20.
    Kassapoglou C., Lagace P.A.: Closed Form Solutions for the Interlaminar Stress Fields in Angle-Ply and Cross-Ply Laminates; J.Compos.Mater. 21, 292–308, 1987.CrossRefGoogle Scholar
  21. 21.
    Morton S.K., Webber J.P.H.: Interlaminar Failure due to Mechanical and Thermal Stresses at the Free Edges of Laminated Plates; Compos.Sci.Technol. 47, 1–13, 1993.CrossRefGoogle Scholar
  22. 22.
    Hashin Z.: Analysis of Composite Materials — A Survey; J.Appl.Mech. 50, 481–505, 1983.CrossRefMATHGoogle Scholar
  23. 23.
    Tolson S., Zabaras N: Finite Element Analysis of Progressive Failure in Laminated Composite Plates; Comput.Struct. 38, 361–376, 1991.CrossRefMATHGoogle Scholar
  24. 24.
    Chawla K.K.: Composite Materials. Springer–Verlag, New York, NY, 1987.CrossRefGoogle Scholar
  25. 25.
    Brewer J.C., Lagace P.A.: Quadratic Stress Criterion for Initiation of Delamination; J.Compos.Mater. 22, 1141–1155, 1988.CrossRefGoogle Scholar
  26. 26.
    Garg A.C.: Delamination — A Damage Mode in Composite Structures; Engng. Fract.Mech. 29, 557–584, 1988.CrossRefGoogle Scholar
  27. 27.
    Grediac M.: A Finite Element Study of the Transverse Shear in Honeycomb Cores; Int.J.Solids Structures 30, 1777–1788, 1993.CrossRefMATHGoogle Scholar
  28. 28.
    Starlinger A., Rammerstorfer F.G.: A Finite Element Formulation for Sandwich Shells Accounting for Local Failure Phenomena; Proc. 2nd Int. Conf. on Sandwich Construction, EMAS, Warley, UK, 1992.Google Scholar
  29. 29.
    Starlinger A.: Development of Efficient Finite Shell Elements for the Analysis of Sandwich Structures Under Large Deformations and Global as Well as Local Instabilities. VDI–Fortschrittsberichte 18/93, VDI–Verlag, Düsseldorf, 1991.Google Scholar
  30. 30.
    Stamm K., Witte H.: Sandwichkonstruktionen — Berechnung, Fertigung, Ausfiihrung. Springer–Verlag, Vienna, 1974.Google Scholar
  31. 31.
    Kuhhorn A.: Geometrisch nichtlineare Theorie für Sandwichschalen unter Einbeziehung des Knitterphänomens. VDI–Fortschrittsberichte 18/100, VDI–Verlag, Düsseldorf, 1991.Google Scholar

Copyright information

© Springer-Verlag Wien 1994

Authors and Affiliations

  • F. G. Rammerstorfer
    • 1
  • A. Starlinger
    • 2
  1. 1.Vienna Technical UniversityViennaAustria
  2. 2.AIREX Composite EngineeringSinsSwitzerland

Personalised recommendations