Description of Thermoelastic Composites by a Mean Field Approach

  • H. J. Böhm
Part of the International Centre for Mechanical Sciences book series (CISM, volume 348)


In this Chapter a Mori—Tanaka-type micromechanical method for modeling the thermoelastic behavior of composites with aligned reinforcements is described in some detail.

The basic assumptions underlying mean field approaches are discussed, and a number of general relations between the elastic tensors, the concentration tensors and the mean fields are given. Eshelby’s solution and the equivalent inclusion method are used for obtaining expressions applicable to dilute composites. After introducing the concept of the average matrix stresses, Mori—Tanaka expressions for the concentration tensors for composites with non-dilute inclusion volume fractions are derived, from which the thermoelastic properties can be directly obtained. Finally, limitations as well as some extensions of the Mori—Tanaka approach are discussed.


Eshelby Tensor Compliance Tensor Equivalent Inclusion Thermoelastic Property Equivalent Inclusion Method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dvorak G.J.: Plasticity Theories for Fibrous Composite Materials; in “Metal Matrix Composites: Mechanisms and Properties” (Eds. R.K. Everett, R.J. Arsenault), pp. 1–77; Academic Press, Boston, MA, 1991.Google Scholar
  2. 2.
    Rammerstorfer F.G.: Lamination Theory,in this book, 1994.Google Scholar
  3. 3.
    Hill R.: Elastic Properties of Reinforced Solids: Some Theoretical Principles; J.Mech.Phys.Sol. 11, 357–372, 1963.CrossRefMATHGoogle Scholar
  4. 4.
    Böhm H.J.: Numerical Investigation of Micro plasticity Effects in Unidirectional Longfiber Reinforced Metal Matrix Composites; Modell.Simul.Mater.Sci.Engng. 1, 649–671, 1993.CrossRefGoogle Scholar
  5. 5.
    Hashin Z.: Analysis of Composite Materials — A Survey; J.Appl.Mech. 50, 481–505, 1983.CrossRefMATHGoogle Scholar
  6. 6.
    Wakashima K., Tsukamoto H., Choi B.H.: Elastic and Thermoelastic Properties of Metal Matrix Composites with Discontinuous Fibers or Particles: Theoretical Guidelines towards Materials Tailoring; in “The Korea–Japan Metals Symposium on Composite Materials”, pp. 102–115; The Korean Institute of Metals, Seoul, Korea, 1988.Google Scholar
  7. 7.
    Benveniste Y., Dvorak G.J.: On a Correspondence Between Mechanical and Thermal Effects in Two-Phase Composites; in “Micromechanics and Inhomogeneity” (Eds. G.J. Weng, M. Taya, H. Abé), pp. 65–82; Springer–Verlag, New York, NY, 1990.Google Scholar
  8. 8.
    Benveniste Y., Dvorak G.J., Chen T.: On Effective Properties of Composites with Coated Cylindrically Orthotropic Fibers; Mech.Mater. 12, 289–297, 1991.CrossRefGoogle Scholar
  9. 9.
    Eshelby J.D.: The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems; Proc.Roy.Soc.London A241, 376–396, 1957.CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Eshelby J.D.: The Elastic Field Outside an Ellipsoidal Inclusion; Proc.Roy.Soc. London A252, 561–569, 1959.CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Mura T.: Micromechanics of Defects in Solids. Martinus Nijhoff, Dordrecht, NL, 1987.CrossRefGoogle Scholar
  12. 12.
    Chiu Y.P.: On the Stress Field due to Initial Strains in a Cuboid Surrounded by an Infinite Elastic Space; J.Appl.Mech. 44, 587–590, 1977.CrossRefMATHGoogle Scholar
  13. 13.
    Tandon G.P., Weng G.J.: The Effect of Aspect Ratio of Inclusions on the Elastic Properties of Unidirectionally Aligned Composites; Polym.Compos. 5, 327–333, 1984.CrossRefGoogle Scholar
  14. 14.
    Zhao Y.H., Tandon G.P., Weng G.J.: Elastic Moduli for a Class of Porous Materials; Acta Mech. 76, 105–130, 1989.CrossRefMATHGoogle Scholar
  15. 15.
    Pedersen O.B.: Thermoelasticity and Plasticity of Composites — I. Mean Field Theory; Acta Metall. 31, 1795–1808, 1983.CrossRefGoogle Scholar
  16. 16.
    Gavazzi A.C., Lagoudas D.C.: On the Numerical Evaluation of Eshelby’s Tensor and its Application to Elastoplastic Fibrous Composites; Comput.Mech. 7, 12–19, 1990.Google Scholar
  17. 17.
    Withers P.J., Stobbs W.M., Pedersen O.B.: The Application of the Eshelby Method of Internal Stress Determination to Short Fibre Metal Matrix Composites; Acta Metall. 37 3061–3084, 1989.Google Scholar
  18. 18.
    Benveniste Y.: A New Approach to the Application of Mori—Tanaka’s Theory in Composite Materials; Mech.Mater. 6, 147–157, 1987.CrossRefGoogle Scholar
  19. 19.
    Hill R.: A Self Consistent Mechanics of Composite Materials; J.Mech.Phys.Sol. 13, 213–222, 1965.CrossRefGoogle Scholar
  20. 20.
    Brown L.M., Stobbs W.M.: The Work-Hardening of Copper—Silica. I. A Model Based on Internal Stresses, with no Plastic Relaxation; Phil.Mag. 23, 1185–1199, 1971.Google Scholar
  21. 21.
    Mori T., Tanaka K.: Average Stress in the Matrix and Average Elastic Energy of Materials with Misfitting Inclusions; Acta Metall. 21, 571–574, 1973.CrossRefGoogle Scholar
  22. 22.
    Böhm H.J.: Notes on Some Mean Field Approaches for Thermoelastic Two-Phase Composites. CDL—µMW Report 108–1994, TU Wien, Vienna, 1994.Google Scholar
  23. 23.
    Hashin Z., Shtrikman S.: A Variational Approach to the Theory of the Elastic Behavior of Multiphase Materials; J.Mech.Phys.Sol. 11, 127–140, 1963.CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Christensen R.M.: A Critical Evaluation for a Class of Micromechanics Models; J.Mech.Phys.Sol. 38, 379–404, 1990.CrossRefGoogle Scholar
  25. 25.
    Christensen R.M., Schantz H., Shapiro J.: On the Range of Validity of the Mori—Tanaka Method; J.Mech.Phys.Sol. 40, 69–73, 1992.CrossRefGoogle Scholar
  26. 26.
    Allen D.H., Lee J.W.: The Effective Thermoelastic Properties of Whisker-Reinforced Composites as Functions of Material Forming Parameters; in “Micromechanics and Inhomogeneity” (Eds. G.J.Weng, M.Taya, H.Abé), pp. 17–40; Springer—Verlag, New York, NY, 1990.Google Scholar
  27. 27.
    Pettermann, H.: Die Mori—Tanaka—Methode fair Mehrphasenkomposite mit beliebigen Orientierungsverteilungen der Einschliesse. CDL—µMW Report 94–1993, TU Wien, Vienna, 1993.Google Scholar
  28. 28.
    Benveniste Y., Dvorak G.J., Chen T.: On Diagonal and Elastic Symmetry of the Approximate Effective Stiffness Tensor of Heterogeneous Media; J.Mech.Phys.Sol. 39, 927–946, 1991.CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Dvorak G.J.: Transformation Field Analysis of Inelastic Composite Materials; Proc.Roy.Soc.London A 437, 311–327, 1992.CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Wien 1994

Authors and Affiliations

  • H. J. Böhm
    • 1
  1. 1.Vienna Technical UniversityViennaAustria

Personalised recommendations