Advertisement

Micromechanics for Macroscopic Material Description of FRPs

  • F. G. Rammerstorfer
  • H. J. Böhm
Part of the International Centre for Mechanical Sciences book series (CISM, volume 348)

Abstract

Overall or effective material parameters of composites usually are obtained by experimental methods applied to composite specimens. If such overall properties are not available, however, but constituents’ parameters can be obtained, analytical or numerical micromechanical techniques must be used. The same methods can also be applied to the design of composites or to characterize the composite by recalculating individual parameters from the measured overall behavior. Therefore, in this Chapter some simple and some more advanced methods for determining the overall, i.e. effective or smeared out, material properties of fiber reinforced composites from the material data of their constituents and their micro-geometrical arrangement are presented.

It should be mentioned that some idealizations must be made in this engineering approach. For example, material parameters of the constituents measured separately for matrix (as a bulk material) and fibers normally differ from the in-situ properties.

Keywords

Fiber Volume Fraction Fiber Direction Interface Shear Stress Unidirectional Composite Macroscopic Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Böhm H.J.: Description of Thermoelastic Composites by a Mean Field Approach; in this book, 1994.Google Scholar
  2. 2.
    Halpin J.C., Tsai S.W.: Effects of Environmental Factors on Composite Materials. USAF Materials Laboratory Technical Report AFML-TR-67–423, Wright Patterson AFB, Dayton, OH, 1969.Google Scholar
  3. 3.
    Agarwal B.D., Broutman L.J.: Analysis and Performance of Fiber Composites. John Wiley & Sons, New York, NY, 1990.Google Scholar
  4. 4.
    Dorninger K.: Entwicklung von nichtlinearen FE-Algorithmen zur Berechnung von Schalenkonstruktionen aus Faserverbundschalen. VDI-Fortschrittsberichte 18/65, VDI-Verlag, Düsseldorf, 1989.Google Scholar
  5. 5.
    Rammerstorfer F.G.: Repetitorium Leichtbau. Oldenbourg Verlag, Vienna, 1992.Google Scholar
  6. 6.
    Weeton J.W., Peters D.M., Thomas K.K.: Engineer’s Guide to Composite Materials; American Society for Metals, Metal Park, OH, 1987.Google Scholar
  7. 7.
    Niederstadt G., Block J., Geier B., Rohwer K., Weiss R.: Leichtbau mit kohlen•stoffaserverstärkten Kunststoffen. Expert-Verlag, Sindelfingen, 1985.Google Scholar
  8. 8.
    Schapery R.A.: Thermal Expansion Coefficients of Composite Materials Based on Energy Principles; J.Compos.Mater. 2(3), 380–404, 1968.CrossRefGoogle Scholar
  9. 9.
    Dorninger K., Rammerstorfer F.G.: A Layered Composite Shell Element for Elastic and Thermoelastic Stress and Stability Analysis at Large Deformations; Int.J.Num.Meth.Engng. 30, 833–858, 1990.CrossRefzbMATHGoogle Scholar
  10. 10.
    Tsai S.W., Hahn H.T.: Introduction to Composite Materials. Technomic Publishing, Westport, CT, 1980.Google Scholar
  11. 11.
    Rosen B.W. (Ed.): Fiber Composite Materials. American Society for Metals, Metals Park, OH, 1965.Google Scholar
  12. 12.
    Waas A.M., Babcock C.D., Knauss W.G.: A Mechanical Model for Elastic Fiber Microbuckling; J.Appl.Mech. 57, 138–149, 1990.CrossRefGoogle Scholar
  13. 13.
    Lagoudas D.C., Tadjbakhsh I., Fares N.: Approach to Microbuckling of Fibrous Composites; J.Appl.Mech. 58, 1–7, 1991.CrossRefGoogle Scholar
  14. 14.
    Swanson S.R.: A Micro-Mechanics Model for In-Situ Compression Strength of Fiber Composite Laminates; J.Engng.Mater.Technol. 114, 8–12, 1992.Google Scholar
  15. 15.
    Svobodnik A.J.: Numerical Treatment of Elastic-Plastic Macromechanical Behavior of Longfiber-Reinforced Metal Matrix Composites. VDI-Fortschrittsberichte 18/90, VDI-Verlag, Düsseldorf, 1990.Google Scholar
  16. 16.
    Svobodnik A.J., Böhm H.J., Rammerstorfer F.G.: A 3/D Finite Element Approach for Metal Matrix Composites Based on Micromechanical Models; Int.J.Plast. 7, 781–802, 1991.CrossRefzbMATHGoogle Scholar
  17. 17.
    Rammerstorfer F.G., Fischer F.D., Böhm H.J.: Treatment of Micromechanical Phenomena by Finite Elements; in “Discretization Methods in Structural Mechanics” (Eds. G.Kuhn, H.Mang), pp. 393–404, Springer-Verlag, Berlin, 1990.Google Scholar
  18. 18.
    Mahishi J.M.: An Integrated Micromechanical and Macromechanical Approach to Fracture Behavior of Fiber-Reinforced Composites; Engng.Fract.Mech. 25, 197–228, 1986.CrossRefGoogle Scholar
  19. 19.
    Tvergaard V.: Analysis of Tensile Properties for a Whisker-Reinforced Metal-Matrix Composite; Acta metall.mater. 38, 185–194, 1990.CrossRefGoogle Scholar
  20. 20.
    Weissenbek E., Rammerstorfer F.G.: Influence of the Fiber Arrangement on the Mechanical and Thermo-Mechanical Behavior of Short Fiber Reinforced MMCs; Acta metall.mater. 43, 1833–1844, 1993.Google Scholar
  21. 21.
    Böhm H.J.: Analytical Descriptions of the Material Behavior of Composites (A Summary of Formulas). CDLµMW–Report 27–1991, TU Wien, Vienna, 1991.Google Scholar
  22. 22.
    Favre J.P., Sigety P., Jaques D.: Stress Transfer by Shear in Carbon Fibre Model Composites; J.Mater.Sci. 26, 189–195, 1991.CrossRefGoogle Scholar
  23. 23.
    Hsueh C.H., Lu M.C.: Elastic Stress Transfer from Fiber to Coating in a Fiber-Coating System; Mater.Sci.Engng. A117, 115–123, 1989.CrossRefGoogle Scholar
  24. 24.
    Staudinger G.: Systematische numerische Untersuchung des Werkstoffverhaltens von kurzfaserverstiirkten Kunststoffen. Diploma Thesis, TU Wien, Vienna, 1988.Google Scholar
  25. 25.
    Courage W.M.G., Schreurs P.J.G.: Effective Material Parameters for Composites with Randomly Oriented Short Fibers; Comput.Struct. 44, 1179–1185, 1992.CrossRefGoogle Scholar
  26. 26.
    Kardos J.L.: Structure–Property Relations for Short-Fiber Reinforced Plastics; Division Technical Meeting, Engng.Prop.and Struct.Div., SPE, Akron, OH, 1975.Google Scholar
  27. 27.
    Böhm H.J.: Computer Based Micromechanical Investigations of the Thermomechanical Behavior of Metal-Matrix Composites. VDI–Fortschrittsberichte 18/101, VDI–Verlag, Düsseldorf, 1991.Google Scholar
  28. 28.
    Love A.E.H.: A Treatise of the Theory of Elasticity. Cambridge University Press, Cambridge, 1927.zbMATHGoogle Scholar
  29. 29.
    Hashin Z.: Analysis of Composite Materials — A Survey; J.Appl.Mech. 50, 481–505, 1983.CrossRefzbMATHGoogle Scholar
  30. 30.
    Hashin Z.: Extremum Principles for Elastic Heterogeneous Media with Imperfect Interfaces and Their Application to Bounding of Effective Moduli; J.Mech.Phys.Sol. 40(4), 767–782, 1992.CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Böhm H.J.: Notes on Some Mean Field Approaches for Composites. CDLµMWReport 57–1992, TU Wien, Vienna, 1992.Google Scholar
  32. 32.
    Nan C.W.: Physics of Inhomogeneous Inorganic Materials; Progr.Mater.Sci. 37, 1–116, 1993.CrossRefGoogle Scholar
  33. 33.
    Eshelby J.D.: The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems; Proc.Roy.Soc.London A241, 376–391, 1957.CrossRefMathSciNetGoogle Scholar
  34. 34.
    Mori T., Tanaka K.: Average Stress in the Matrix and Average Elastic Energy of Materials with Misfitting Inclusions; Acta Metall. 21, 571–574, 1973.CrossRefGoogle Scholar
  35. 35.
    Tandon G.P., Weng G.J.: The Effect of Aspect Ratio of Inclusions on the Elastic Properties of Unidirectionally Aligned Composites; Polym.Compos. 5, 327–333, 1984.CrossRefGoogle Scholar
  36. 36.
    Benveniste Y.: A New Approach to the Application of Mori—Tanaka’s Theory in Composite Materials; Mech.Mater. 6, 147–157, 1987.CrossRefGoogle Scholar
  37. 37.
    Christensen R.M.: A Critical Evaluation for a Class of Micromechanics Models; J.Mech.Phys.Sol. 38 (3), 379–404, 1990.CrossRefGoogle Scholar
  38. 38.
    Lempriere B.M.: Poisson’s Ratio in Orthotropic Materials; AIAA J. 6, 2226–2277, 1968.CrossRefGoogle Scholar
  39. 39.
    Jones R.M.: Mechanics of Composite Materials. Scripta Book Company, Washington, DC, 1974.Google Scholar
  40. 40.
    Pedersen P.: Bounds on Elasticity Energy in Solids of Orthotropic Materials; Struct.Optimization 2, 55–62, 1992.CrossRefGoogle Scholar
  41. 41.
    Hashin Z.: Analysis of Properties of Fiber Composites with Anisotropic Constituents; J.Appl.Mech. 46, 543–550, 1979.CrossRefzbMATHGoogle Scholar
  42. 42.
    Hashin Z.: On Elastic Behavior of Fibre Reinforced Materials of Arbitrary Transverse Phase Geometry; J.Mech.Phys.Sol. 13, 119–134, 1965.CrossRefGoogle Scholar
  43. 43.
    Rosen B.W., Hashin Z.: Effective Thermal Expansion Coefficients and Specific Heats of Composite Materials; Int.J.Engng.Sci. 8, 157–173, 1970.CrossRefGoogle Scholar
  44. 44.
    Hashin Z., Shtrikman S.: A Variational Approach to the Theory of the Elastic Behavior of Multiphase Materials; J.Mech.Phys.Sol. 11, 127–140, 1963.CrossRefzbMATHMathSciNetGoogle Scholar
  45. 45.
    Halpin J.C., Kardos J.L.: The Halpin—Tsai Equations: A Review; Polym.Engng.Sci. 16, 344–351, 1976.CrossRefGoogle Scholar
  46. 46.
    Hill R.: Elastic Properties of Reinforced Solids: Some Theoretical Principles; J.Mech.Phys.Sol. 11, 191–196, 1963.Google Scholar
  47. 47.
    Poech M.H.: Deformation of Two-Phase Materials: Application of Analytical Elasticity Solutions to Plasticity; Scripta metall.mater. 27, 1027–1031, 1992.CrossRefGoogle Scholar
  48. 48.
    Wakashima K., Otsuka M., Umekawa S.: Thermal Expansion of Heterogeneous Solids Containing Aligned Ellipsoidal Inclusions; J.Compos.Mater. 8, 391–404, 1974.CrossRefGoogle Scholar
  49. 49.
    Hatta H., Taya M.: Effective Thermal Conductivity of a Misoriented Short Fiber Composite; J.Appl.Phys. 58, 2478–2486, 1985.Google Scholar
  50. 50.
    Takahashi K., Harakawa K., Sakai T.: Analysis of the Thermal Expansion Coeff cients of Particle Filled Polymers; J.Compos.Mater. 14, 144–159, 1980.CrossRefGoogle Scholar
  51. 51.
    Levin V.M.: On the Coefficients of Thermal Expansion of Heterogeneous Materials; Mech.Sol. 2, 58–61, 1967.Google Scholar
  52. 52.
    Kathrina T., Round R., Bridge B.: An Investigation of the Composition Dependence of the Elasticity, Reaction Rate and Porosity of Orthophosphate Bonded Ceramics Using an Ultrasonic Double-Probe Method; J.Phys.D 24, 1673–1686, 1991.CrossRefGoogle Scholar
  53. 53.
    Zimmerman R.W.: Hashin—Shtrikman Bounds on the Poisson’s Ratio of a Composite Material; Mech.Res.Com. 16, 563–569, 1992.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Wien 1994

Authors and Affiliations

  • F. G. Rammerstorfer
    • 1
  • H. J. Böhm
    • 1
  1. 1.Vienna Technical UniversityViennaAustria

Personalised recommendations