Skip to main content

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 348))

Abstract

Overall or effective material parameters of composites usually are obtained by experimental methods applied to composite specimens. If such overall properties are not available, however, but constituents’ parameters can be obtained, analytical or numerical micromechanical techniques must be used. The same methods can also be applied to the design of composites or to characterize the composite by recalculating individual parameters from the measured overall behavior. Therefore, in this Chapter some simple and some more advanced methods for determining the overall, i.e. effective or smeared out, material properties of fiber reinforced composites from the material data of their constituents and their micro-geometrical arrangement are presented.

It should be mentioned that some idealizations must be made in this engineering approach. For example, material parameters of the constituents measured separately for matrix (as a bulk material) and fibers normally differ from the in-situ properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Böhm H.J.: Description of Thermoelastic Composites by a Mean Field Approach; in this book, 1994.

    Google Scholar 

  2. Halpin J.C., Tsai S.W.: Effects of Environmental Factors on Composite Materials. USAF Materials Laboratory Technical Report AFML-TR-67–423, Wright Patterson AFB, Dayton, OH, 1969.

    Google Scholar 

  3. Agarwal B.D., Broutman L.J.: Analysis and Performance of Fiber Composites. John Wiley & Sons, New York, NY, 1990.

    Google Scholar 

  4. Dorninger K.: Entwicklung von nichtlinearen FE-Algorithmen zur Berechnung von Schalenkonstruktionen aus Faserverbundschalen. VDI-Fortschrittsberichte 18/65, VDI-Verlag, Düsseldorf, 1989.

    Google Scholar 

  5. Rammerstorfer F.G.: Repetitorium Leichtbau. Oldenbourg Verlag, Vienna, 1992.

    Google Scholar 

  6. Weeton J.W., Peters D.M., Thomas K.K.: Engineer’s Guide to Composite Materials; American Society for Metals, Metal Park, OH, 1987.

    Google Scholar 

  7. Niederstadt G., Block J., Geier B., Rohwer K., Weiss R.: Leichtbau mit kohlen•stoffaserverstärkten Kunststoffen. Expert-Verlag, Sindelfingen, 1985.

    Google Scholar 

  8. Schapery R.A.: Thermal Expansion Coefficients of Composite Materials Based on Energy Principles; J.Compos.Mater. 2(3), 380–404, 1968.

    Article  Google Scholar 

  9. Dorninger K., Rammerstorfer F.G.: A Layered Composite Shell Element for Elastic and Thermoelastic Stress and Stability Analysis at Large Deformations; Int.J.Num.Meth.Engng. 30, 833–858, 1990.

    Article  MATH  Google Scholar 

  10. Tsai S.W., Hahn H.T.: Introduction to Composite Materials. Technomic Publishing, Westport, CT, 1980.

    Google Scholar 

  11. Rosen B.W. (Ed.): Fiber Composite Materials. American Society for Metals, Metals Park, OH, 1965.

    Google Scholar 

  12. Waas A.M., Babcock C.D., Knauss W.G.: A Mechanical Model for Elastic Fiber Microbuckling; J.Appl.Mech. 57, 138–149, 1990.

    Article  Google Scholar 

  13. Lagoudas D.C., Tadjbakhsh I., Fares N.: Approach to Microbuckling of Fibrous Composites; J.Appl.Mech. 58, 1–7, 1991.

    Article  Google Scholar 

  14. Swanson S.R.: A Micro-Mechanics Model for In-Situ Compression Strength of Fiber Composite Laminates; J.Engng.Mater.Technol. 114, 8–12, 1992.

    Google Scholar 

  15. Svobodnik A.J.: Numerical Treatment of Elastic-Plastic Macromechanical Behavior of Longfiber-Reinforced Metal Matrix Composites. VDI-Fortschrittsberichte 18/90, VDI-Verlag, Düsseldorf, 1990.

    Google Scholar 

  16. Svobodnik A.J., Böhm H.J., Rammerstorfer F.G.: A 3/D Finite Element Approach for Metal Matrix Composites Based on Micromechanical Models; Int.J.Plast. 7, 781–802, 1991.

    Article  MATH  Google Scholar 

  17. Rammerstorfer F.G., Fischer F.D., Böhm H.J.: Treatment of Micromechanical Phenomena by Finite Elements; in “Discretization Methods in Structural Mechanics” (Eds. G.Kuhn, H.Mang), pp. 393–404, Springer-Verlag, Berlin, 1990.

    Google Scholar 

  18. Mahishi J.M.: An Integrated Micromechanical and Macromechanical Approach to Fracture Behavior of Fiber-Reinforced Composites; Engng.Fract.Mech. 25, 197–228, 1986.

    Article  Google Scholar 

  19. Tvergaard V.: Analysis of Tensile Properties for a Whisker-Reinforced Metal-Matrix Composite; Acta metall.mater. 38, 185–194, 1990.

    Article  Google Scholar 

  20. Weissenbek E., Rammerstorfer F.G.: Influence of the Fiber Arrangement on the Mechanical and Thermo-Mechanical Behavior of Short Fiber Reinforced MMCs; Acta metall.mater. 43, 1833–1844, 1993.

    Google Scholar 

  21. Böhm H.J.: Analytical Descriptions of the Material Behavior of Composites (A Summary of Formulas). CDLµMW–Report 27–1991, TU Wien, Vienna, 1991.

    Google Scholar 

  22. Favre J.P., Sigety P., Jaques D.: Stress Transfer by Shear in Carbon Fibre Model Composites; J.Mater.Sci. 26, 189–195, 1991.

    Article  Google Scholar 

  23. Hsueh C.H., Lu M.C.: Elastic Stress Transfer from Fiber to Coating in a Fiber-Coating System; Mater.Sci.Engng. A117, 115–123, 1989.

    Article  Google Scholar 

  24. Staudinger G.: Systematische numerische Untersuchung des Werkstoffverhaltens von kurzfaserverstiirkten Kunststoffen. Diploma Thesis, TU Wien, Vienna, 1988.

    Google Scholar 

  25. Courage W.M.G., Schreurs P.J.G.: Effective Material Parameters for Composites with Randomly Oriented Short Fibers; Comput.Struct. 44, 1179–1185, 1992.

    Article  Google Scholar 

  26. Kardos J.L.: Structure–Property Relations for Short-Fiber Reinforced Plastics; Division Technical Meeting, Engng.Prop.and Struct.Div., SPE, Akron, OH, 1975.

    Google Scholar 

  27. Böhm H.J.: Computer Based Micromechanical Investigations of the Thermomechanical Behavior of Metal-Matrix Composites. VDI–Fortschrittsberichte 18/101, VDI–Verlag, Düsseldorf, 1991.

    Google Scholar 

  28. Love A.E.H.: A Treatise of the Theory of Elasticity. Cambridge University Press, Cambridge, 1927.

    MATH  Google Scholar 

  29. Hashin Z.: Analysis of Composite Materials — A Survey; J.Appl.Mech. 50, 481–505, 1983.

    Article  MATH  Google Scholar 

  30. Hashin Z.: Extremum Principles for Elastic Heterogeneous Media with Imperfect Interfaces and Their Application to Bounding of Effective Moduli; J.Mech.Phys.Sol. 40(4), 767–782, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  31. Böhm H.J.: Notes on Some Mean Field Approaches for Composites. CDLµMWReport 57–1992, TU Wien, Vienna, 1992.

    Google Scholar 

  32. Nan C.W.: Physics of Inhomogeneous Inorganic Materials; Progr.Mater.Sci. 37, 1–116, 1993.

    Article  Google Scholar 

  33. Eshelby J.D.: The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems; Proc.Roy.Soc.London A241, 376–391, 1957.

    Article  MathSciNet  Google Scholar 

  34. Mori T., Tanaka K.: Average Stress in the Matrix and Average Elastic Energy of Materials with Misfitting Inclusions; Acta Metall. 21, 571–574, 1973.

    Article  Google Scholar 

  35. Tandon G.P., Weng G.J.: The Effect of Aspect Ratio of Inclusions on the Elastic Properties of Unidirectionally Aligned Composites; Polym.Compos. 5, 327–333, 1984.

    Article  Google Scholar 

  36. Benveniste Y.: A New Approach to the Application of Mori—Tanaka’s Theory in Composite Materials; Mech.Mater. 6, 147–157, 1987.

    Article  Google Scholar 

  37. Christensen R.M.: A Critical Evaluation for a Class of Micromechanics Models; J.Mech.Phys.Sol. 38 (3), 379–404, 1990.

    Article  Google Scholar 

  38. Lempriere B.M.: Poisson’s Ratio in Orthotropic Materials; AIAA J. 6, 2226–2277, 1968.

    Article  Google Scholar 

  39. Jones R.M.: Mechanics of Composite Materials. Scripta Book Company, Washington, DC, 1974.

    Google Scholar 

  40. Pedersen P.: Bounds on Elasticity Energy in Solids of Orthotropic Materials; Struct.Optimization 2, 55–62, 1992.

    Article  Google Scholar 

  41. Hashin Z.: Analysis of Properties of Fiber Composites with Anisotropic Constituents; J.Appl.Mech. 46, 543–550, 1979.

    Article  MATH  Google Scholar 

  42. Hashin Z.: On Elastic Behavior of Fibre Reinforced Materials of Arbitrary Transverse Phase Geometry; J.Mech.Phys.Sol. 13, 119–134, 1965.

    Article  Google Scholar 

  43. Rosen B.W., Hashin Z.: Effective Thermal Expansion Coefficients and Specific Heats of Composite Materials; Int.J.Engng.Sci. 8, 157–173, 1970.

    Article  Google Scholar 

  44. Hashin Z., Shtrikman S.: A Variational Approach to the Theory of the Elastic Behavior of Multiphase Materials; J.Mech.Phys.Sol. 11, 127–140, 1963.

    Article  MATH  MathSciNet  Google Scholar 

  45. Halpin J.C., Kardos J.L.: The Halpin—Tsai Equations: A Review; Polym.Engng.Sci. 16, 344–351, 1976.

    Article  Google Scholar 

  46. Hill R.: Elastic Properties of Reinforced Solids: Some Theoretical Principles; J.Mech.Phys.Sol. 11, 191–196, 1963.

    Google Scholar 

  47. Poech M.H.: Deformation of Two-Phase Materials: Application of Analytical Elasticity Solutions to Plasticity; Scripta metall.mater. 27, 1027–1031, 1992.

    Article  Google Scholar 

  48. Wakashima K., Otsuka M., Umekawa S.: Thermal Expansion of Heterogeneous Solids Containing Aligned Ellipsoidal Inclusions; J.Compos.Mater. 8, 391–404, 1974.

    Article  Google Scholar 

  49. Hatta H., Taya M.: Effective Thermal Conductivity of a Misoriented Short Fiber Composite; J.Appl.Phys. 58, 2478–2486, 1985.

    Google Scholar 

  50. Takahashi K., Harakawa K., Sakai T.: Analysis of the Thermal Expansion Coeff cients of Particle Filled Polymers; J.Compos.Mater. 14, 144–159, 1980.

    Article  Google Scholar 

  51. Levin V.M.: On the Coefficients of Thermal Expansion of Heterogeneous Materials; Mech.Sol. 2, 58–61, 1967.

    Google Scholar 

  52. Kathrina T., Round R., Bridge B.: An Investigation of the Composition Dependence of the Elasticity, Reaction Rate and Porosity of Orthophosphate Bonded Ceramics Using an Ultrasonic Double-Probe Method; J.Phys.D 24, 1673–1686, 1991.

    Article  Google Scholar 

  53. Zimmerman R.W.: Hashin—Shtrikman Bounds on the Poisson’s Ratio of a Composite Material; Mech.Res.Com. 16, 563–569, 1992.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Wien

About this chapter

Cite this chapter

Rammerstorfer, F.G., Böhm, H.J. (1994). Micromechanics for Macroscopic Material Description of FRPs. In: Hult, J., Rammerstorfer, F.G. (eds) Engineering Mechanics of Fibre Reinforced Polymers and Composite Structures. International Centre for Mechanical Sciences, vol 348. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2702-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2702-5_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82652-2

  • Online ISBN: 978-3-7091-2702-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics