Basic Features of the Kinetic Theory of Plasma Waves and of Waves-Particles Interaction

  • L. Krlìn
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 349)


In the following lectures, a brief introduction into the kinetic theory of plasma waves and into the interaction of waves with plasma particles is presented.


Alpha Particle Vlasov Equation Trap Particle Langmuir Wave Collision Term 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Montgomery, D.C. and Tidman, D.A.: Plasma Kinetic Theory, MacGraw-Hill, New York 1964.Google Scholar
  2. [2]
    Sanderson, J.J.: Kinetic Theory, in: Plasma Physics and Nuclear Fusion Research (Ed. R.D. Gill), Academic Press, London 1981, 119–154.CrossRefGoogle Scholar
  3. [3]
    Krall, N.A. and Trivelpiece, A.W.: Principles of Plasma Physics, MacGraw-Hill, New York 1973.Google Scholar
  4. [4]
    Wesson, J.: Tokamaks, Oxford Science Publications, Oxford 1987.Google Scholar
  5. [5]
    Vlasov, A.A.: J. Phys. (USSR), 8 (1938), 25.Google Scholar
  6. [6]
    Landau, L.L.: J. Phys. (USSR), 10 (1946), 25.MATHGoogle Scholar
  7. [7]
    Goldstein, H.: Classical Mechanics, Addison-Wesley, Reading, Mass. 1951.Google Scholar
  8. [8]
    O’Neil, T.M.: Collisionless damping of nonlinear plasma oscillations, Phys. Fluids, 8 (1965), 2255–2262.ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    Rosenbluth, M.N.: Microinstabilities, in: Plasma Physics (Seminar, Trieste, 1964 ), IAEA, Vienna 1965, 485–513.Google Scholar
  10. [10]
    Drummond, W.E. and Pines, D.: Nonlinear stability of plasma oscillations, Nucl. Fusion, Suppl. Pt. 3 (1962), 1049–1057.Google Scholar
  11. [11]
    Vedenov, A.A., Velikhov, E.P. and Sagdeev, R.Z.: Nonlinear oscillations of rarified plasma, Nucl. Fusion, 1 (1961), 82–100.CrossRefGoogle Scholar
  12. [12]
    Tsunoda, T.I., Doveil, F. and Malmberg, J.H.: Experimental test of quasilinear theory, Phys. Fluids, B 3 (1991), 2747–2757.CrossRefGoogle Scholar
  13. [13]
    T.H.Stix, Waves in Plasmas, American Institute of Physics, New York 1992.Google Scholar
  14. [14] Vedenov, A.A.: Introduction to the Theory of a Weak-Turbulent Plasma (in Russian)
    in: Voprosy teorii plasmy 3, Gosatomizdat, Moscow 1963, 203–244.Google Scholar
  15. [15]
    Zaslayskii, G.M.: Stochasticity of Dynamical Systems (in Russian), Nauka, Moscow 1984.Google Scholar
  16. [16]
    Cary, J.R., Doxas, I., Escande, D.F. and Verga, A.D.: Enhancement of the velocity diffusion in longitudinal plasma turbulence, Phys. Fluids, B 4, (1992), 2062–2069.CrossRefGoogle Scholar
  17. [17]
    Laval, G. and Pesme, D.: Inconsistency of quasilinear theory, Phys. Fluids, 26 (1983), 66–68.ADSCrossRefMATHGoogle Scholar
  18. [18]
    Laval, G. and Pesme, P.: Self-consistency effects in quasilinear theory: a model for turbulent trapping, Phys. Rev. Lett., 53 (1984), 270–273.ADSCrossRefGoogle Scholar
  19. [19]
    Cary, J.M., Escande, D.F. and Verga, A.D.: Nonquasilinear diffusion far from the chaotic threshold, Phys. Rev. Lett., 65 (1990), 3132–3135.ADSCrossRefGoogle Scholar
  20. [20]
    Cook, I.: Plasma Turbulence, in: Plasma Physics and Nuclear Fusion Research (Ed. R.D.Gill), Academic Press, London 1981, 293–304.CrossRefGoogle Scholar
  21. [21]
    Dupreé, T.H.: A perturbation theory for strong plasma turbulence, Phys. Fluids, 9 (1966), 1773–1782.ADSCrossRefGoogle Scholar
  22. [22]
    Akchiezer, A.I.: Plasma Electrodynamics (in Russian), Nauka, Moscow 1974.Google Scholar
  23. [23]
    Brambilla, M. and Cardinali, A.: Eikonal description of hf waves in toroidal plasmas, Plasma Physics, 24 (1982), 1187–1218.ADSCrossRefMathSciNetGoogle Scholar
  24. [24]
    Wersinger, J.M., Ott, E. and Finn, J.M.: Ergodic behavior of lower hybrid decay wave ray trajectories in toroidal geometry, Phys. Fluids, 21 (1978), 2263–2267.ADSCrossRefGoogle Scholar
  25. [25]
    Bonoli P.T. and Ott, E.: Toroidal and scattering effects in lower-hybrid wave propagation, Phys. Fluids, 25 (1982), 359–375.ADSCrossRefMATHGoogle Scholar
  26. [26]
    Fisch, N.J.: Confining a tokamak plasma with rf-driven currents, Phys. Rev. Lett., 41 (1978). 873–876.ADSCrossRefGoogle Scholar
  27. [27]
    Pavlo, P., Krlín L. and Thtor, Z.: Effects of magnetized alpha particles on lower hybrid heating and current drive in a reactor grade plasma, Nucl. Fusion, 31 (1991), 711–727; ITER-IL-Ph-6–9-S-23, Max-Planck-Institut fuer Plasma Physik, Garching, 1991.Google Scholar
  28. [28]
    Klíma, R. and Longinov, A.V.: Excitation of a stationary current in a toroidal plasma by waves with a wide spectrum, Fiz. Plazmy, 5 (1979), 496–500.Google Scholar
  29. [29]
    Barbato, E. and Santiti, F.: Quasi-linear absorption of lower hybrid waves by fusion generated alpha particles, Nucl. Fusion, 31 (1991), 673–685.CrossRefGoogle Scholar
  30. [30]
    Spada, M., Bornatici, M. and Engelmann, F.: Absorption of lower hybrid slow waves by fusion alpha particles, Nucl. Fusion, 31 (1991), 447–458.CrossRefGoogle Scholar
  31. [31]
    Chen, L., Vaclavik, J. and Hammet, G.W.: Ion radial transport induced by ICRF waves in tokamaks, Nucl. Fusion, 28 (1988), 389–398.CrossRefGoogle Scholar
  32. [32]
    Lichtenberg, A.J. and Lieberman, M.A.: Regular and Stochastic Motion, Springer, Berlin 1983.CrossRefMATHGoogle Scholar
  33. [33]
    Balescu, R.: Equilibrium and Nonequilibrium Statistical Mechanics, Wiley, New York 1978.Google Scholar
  34. [34]
    Whiteman, K.J.: Invariants and stability in classical mechanics, Rep. Progr. Phys., 40 (1977), 1033–1069.ADSCrossRefGoogle Scholar
  35. [35]
    Krlín, L.: The intrinsic stochasticity of near-integrable Hamiltonian systems, Fortschr. Phys., 37 (1989), 735–760.CrossRefMathSciNetGoogle Scholar
  36. [36]
    Zaslayskii, G.M. and Chirikov, B.V.: The stochastic instability of non-linear oscillations, Uspekhi Fiz. Nauk, 105 (1971), 3–39.Google Scholar
  37. [37]
    Whang, K.W. and Morales, G.J.: ICRF heating and its effects on single-particle confinement in tokamaks, Nucl. Fusion, 23 (1983), 481–497.CrossRefGoogle Scholar
  38. [38]
    Krlín, L., Pavlo, P., Tluchor, Z. and Gâsek, Z.: On the stochastic interaction of monochromatic Alfén waves with toroidally trapped particles, Plasma Physics and Contr. Fusion, 29 (1987), 1653–1674.Google Scholar
  39. [39]
    Gssek, Z., Krlín, L. and Tluchor, Z.: On the stochastic interaction of toroidally trapped alpha particles with lower hybrid waves in the tokamak reactor regime, Physics Letters, 135 (1989), 284–289.CrossRefGoogle Scholar
  40. [40]
    Sagdeev, R.Z. and Galeev, A.A.: Nonlinear Plasma Theory, Benjamin, New York 1969.Google Scholar
  41. [41]
    Manley, J.M. and Rowe, H.E., Proc. IRE, 47 (1959), 2155.Google Scholar
  42. [42]
    Kadomtsev, B.B.: Collective Phenomena in Plasmas (in Russian), Nauka, Moscow 1976.Google Scholar
  43. [43]
    Davidson, R.C.: Methods in Nonlinear Plasma Theory, Academic Press, New York 1972.Google Scholar
  44. [44]
    Ott, E. and Dum, C.T.: Nonlinear Landau damping and beat wave trapping, Phys. Fluids, 14 (1971), 959–961.ADSCrossRefGoogle Scholar
  45. [45]
    Mima, K.: Modification of weak turbulent theory due to perturbed orbit effects. II. Nonlinear Landau damping of electron plasma waves, J. Phys. Soc. Jap., 35 (1973), 261–271.ADSCrossRefGoogle Scholar
  46. [46]
    Krlín, L.: Application of the theory of mixing systems to nonlinear Landau damping, J. Plasma Phys., 12, part 3 (1974), 365–379.ADSCrossRefGoogle Scholar
  47. [47]
    hrlín, L.: Effect of trapped particles in the beat of two waves on the wave dynamics, Czech. J. Phys. B, 31 (1981), 383–398.CrossRefGoogle Scholar
  48. [48]
    Nambu, M. and Hada, T.: Conservation relations and violation of the Manley-Rowe relation for plasma-maser instability, Phys. Fluids, B 3 (1993), 743–751.Google Scholar
  49. [49]
    Nambu, M., Sarma, S.N. and Sarma, K.K.: Momentum source of the plasma maser, Phys. Rev., A 45 (1992), 7456–7462.ADSCrossRefGoogle Scholar
  50. [50]
    Krlín, L.: On acceleration of particles trapped in the potential trough of the beat of two waves, Plasma Physics, 245 (1982), 775–781.ADSCrossRefGoogle Scholar
  51. [51]
    Srivastava, S. and Morales, G.J.: Nonlinear Landau damping of resonantly excited plasma waves in a nonuniform plasma, Bull. Am. Phys. Soc., 34 (1989), 2025.Google Scholar
  52. [52]
    Srivastava, S., Morales, G.J. and Maggs, J.E.: Nonlinear Landau damping of resonantly excited fields in nonuniform plasmas, Bull. Am. Phy. Soc., 37 (1992), 1359.Google Scholar
  53. [53]
    Tajima, T. and Dawson, J.M.: Laser electron accelerator, Phys. Rev. Lett., 43 (1979), 267–270.ADSCrossRefGoogle Scholar
  54. [54]
    Mikhailovskii, A.B.: Theory of Plasma Instabilities (in Russian), Atomizdat, Moscow 1970.Google Scholar
  55. [55]
    O’Neil, T.M. and Winfrey, J.H.: Nonlinear interaction of a small cold beam and a plasma, part II, Phys. Fluids, 15 (1972), 1514–1522.ADSCrossRefGoogle Scholar
  56. [56]
    Drummond, W.E., Malmberg, J.H., O’Neil, T.M. and Thompson, J.R.: Nonlinear development of the beam-plasma instability, Phys. Fluids, 13 (1970), 2422–2425.ADSCrossRefGoogle Scholar
  57. [57]
    Jungwirth, K. and Krlín, L.: Generation of an intensive stationary wave in modulated beam-plasma systems, Plasma Physics, 17 (1975), 861–873.ADSCrossRefGoogle Scholar
  58. [58]
    Kruer, W.L., Dawson, J.M. and Sudan, R.N.: Trapped-particle instability, Phys. Rev. Lett., 23 (1969), 838–841.ADSCrossRefGoogle Scholar
  59. [59]
    Krlín, L.: On the instability of systems with trapped particles, Plasma Physics, 19 (1977), 109–115.ADSGoogle Scholar
  60. [60]
    Shoucri, M.: Destruction of trapping oscillations by sideband instability, Phys. Fluids, 23 (1980), 2030–2033.ADSCrossRefGoogle Scholar
  61. [61]
    Riyopoulos, S. and Tang, C.M.: Chaotic electron motion caused by sidebands in free electron lasers, Phys. Fluids, 31 (1988), 3387–3402.ADSCrossRefGoogle Scholar
  62. [62]
    Cohen, B.I. and Cohen, R.H.: An electromagnetic trapped-particle sideband instability, Preprint UCRL-98746, Lawrence Livermore National Laboratory, 1988.Google Scholar
  63. [63]
    Guss, W.C., Basen, M.A., Kreischer, K.E., Temkin, R.J., Antonsen, T.A., Cai, Jr., S.Y., Saraph, C. and Levush, B.: Sideband mode competition in a gyrotron oscillator, Phys. Rev. Lett., 69 (1992), 3727–3730.ADSCrossRefGoogle Scholar
  64. [64]
    Drummond, W.E.: Quasi-Linear Theory of Plasma Turbulence, in: Plasma Physics (Seminar, Trieste, 1964 ), IAEA, Vienna 1965, 527–541.Google Scholar
  65. [65]
    Chen, F.F.: Introduction to Plasma Physics, Plenum Press, New York and London 1974.Google Scholar
  66. [66]
    Fisch, N.J.: Theory of current drive in plasmas, Rev. Mod. Phys., 59 (1987), 175–234.ADSCrossRefGoogle Scholar
  67. [67]
    Pifl, V., Sunka, P., Ullschmied, J., Jungwirth, K. and Krlín, L.: Some non-linear phenomena associated with high-frequency beam-plasma instabilities, Plasma Physics and Controlled Nuclear Fusion Research (1971), IAEA, Vienna 1972, 155–163.Google Scholar

Copyright information

© Springer-Verlag Wien 1994

Authors and Affiliations

  • L. Krlìn
    • 1
  1. 1.Academy of Sciences of the Czech RepublicPragueCzech Republic

Personalised recommendations