Methodical Design of New Parallel Robots via the Lie Group of Displacements

  • J. M. Hervé
  • F. Sparacino
Conference paper
Part of the International Centre for Mechanical Sciences book series (CISM, volume 361)


Our aim is to give a complete presentation of the application of Lie Group Theory to the structural design of manipulator robots. We focused our attention on parallel manipulator robots and in particular those capable of spatial translation. This is justified by many industrial applications which do not need the orientation of the end-effector in the space. The advantage of this method is that we can derive systematically all kinematics chains which produce the desired displacement subgroup. Hence, an entire family of robots results from our investigation. The Y-STAR manipulator is now a working device. H-ROBOT is also being constructed. Both manipulators respond to the increasing demand of fast working rhythms in modern production at a low cost and are suited for any kind of pick and place jobs like sorting, arranging on palettes, packaging and assembly.


Kinematic Chain Mobile Platform Parallel Robot Kinematic Pair Dual Quaternion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    HERVE J. M., “Analyse structurelle des mécanismes par groupe des déplacements”, Mach. Theory 13, pp. 437–450 (1978).Google Scholar
  2. (2).
    FANGHELLA P., “Kinematics of Spatial Linkage by Group Algebra: a structure based approach”, Mech. Mach. Theory 23, n° 3 pp. 171–183 (1988).CrossRefGoogle Scholar
  3. (3).
    HERVE J. M., “The mathematical group structure of the set of displacements ” Mach. Theory 29, n°1 pp. 73–81 (1994).Google Scholar
  4. (4).
    HERVE J. M., “Intrinsic formulation of problems of geometry and kinematics of mechanism”, Mach. Theory 17,pp. 179–184 (1982).CrossRefGoogle Scholar
  5. (5).
    ISIDORI ALBERTO,“Nonlinear Control Systems”, Springer-Verlag, (1985).Google Scholar
  6. (6).
    TANAKA M., KURITA T., UMEYAMA S., “Image Understanding via Representation of the Projected Motion Group”, IEEE Conference on Computer Vision and Pattern Recognition ICCV, June 1993.Google Scholar
  7. (7).
    HOFFMAN W.C., “The Lie algebra of visual perception”, J. Math. Psych. 3, 1966, pp. 65–98.CrossRefMATHGoogle Scholar
  8. (8).
    SUGIMOTO K., DUFFY J.,“Application of linear Algebra to Screw Systems”, Mech. Mach. Theory, Vol. 17 pp. 73–83 (1982).CrossRefGoogle Scholar
  9. (9).
    HERVE J. M., SPARACINO F.,“Structural Synthesis of Parallel Robots Generating Spatial Translation” 5th Int. Conf. on Adv. Robotics, IEEE n° 91TH0367–4, Vol 1, pp. 808–813, 1991.MathSciNetGoogle Scholar
  10. (10).
    CLAVEL R.,“Delta, a fast robot with parallel geometry”, Proc. Int. Symp. on Industrial Robots, April 1988, pp 91–100.Google Scholar
  11. (11).
    HERVE J. M., SPARACINO F.,“Star, a New Concept in Robotics”, 3rd Intern. Workshop on Advances in Robot Kinematics, Sept. 7–9, 1992, Ferrara, Italy pp. 176–183.Google Scholar
  12. (12).
    MERLET J.P.,“Les robots parallèles”, Hermès, Paris 1990.Google Scholar
  13. (13).
    KARGER A., NOVACK J., Space Kinematics and Lie Groups, Gordon and Breach Science Publishers, 1985.Google Scholar
  14. (14).
    CHEVALLIER D.P.,“Lie Algebras, Modules, Dual Quaternions and Algebraic Methods in Kinematics”, Mech. Mach. Theory, Vol. 26, n°6, pp. 613–627 (1991).Google Scholar
  15. (15).
    POPPLESTONE R.J.,“Group Theory and Robotics”, in Robotics Research. The First Int. Symp., M. Brady and R. Paul Eds., Cambridge, MA.MIT Press 1984.Google Scholar
  16. (16).
    ANGELES J.,“Spatial kinematics chains”,Spring Verlag, Berlin, 1982.Google Scholar
  17. (17).
    HILLER M.,WOERNIE C.,“A Unified Representation of Spatial Displacements”, Mech. Mach. Theory, Vol. 19 pp. 477–486 (1984).Google Scholar
  18. (18).
    SAMUEL A.E., Mc AREE P.R.,HUNT K.H.,“Unifying Screw Geometry and Matrix Transformations”, The International Journal of Robotics Research, Vol. 10, n°5, October 1991.Google Scholar
  19. (19).
    HERVE.J.M., “Dispositif pour le déplacement en translation spatiale d’un élément dans l’espace, en particulier pour robot mécanique”, French patent n° 9100286 of january 11, 1991. European patent n° 91403521.7 of december 23, 1991.Google Scholar

Copyright information

© Springer-Verlag Wien 1995

Authors and Affiliations

  • J. M. Hervé
    • 1
  • F. Sparacino
    • 2
  1. 1.Ecole Centrale de ParisChatenay MalabryFrance
  2. 2.Polytechnical University of MilanMilanItaly

Personalised recommendations