Optimization of Kinematics Performances of Manipulators under Specified Task Conditions

  • S. Zeghloul
  • B. Blanchard
  • J. A. Pamanes
Part of the International Centre for Mechanical Sciences book series (CISM, volume 361)


This paper presents a method for dealing with the problem of designing a robotized cell. The problem dealt with here, concerns determining the robot’s placement, for any given task. The approach presented is based on an optimization technic, which consists of determining a placement which minimizes an objective function describing the task. In the proposed formulation, during the placement search, this method considers the constraints due to obstacles as well as the robot’s joint limits. Through the different examples presented we will show the effectiveness of this method.


Optimal Placement Placement Problem Design Vector Joint Limit Robot Base 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Nelson, K. Pedersen and M. Donath, “Locating assembly tasks in a manipulator’s workspace”. IEEE Proc. of the Int. Conf. on Robotics and Automation, pp. 1367–1372. (1987).Google Scholar
  2. 2.
    S.L. Chiu, “Task compatibility of manipultors postures”. The Int. J of Robotics Research, Vol. 7, na 5, pp. 13–21. (1988).CrossRefGoogle Scholar
  3. 3.
    J.A. Pamanes-Garcia, “A criterion for optimal placement of robotic manipulators”. IFAC Proc. of the 6th Sym. on Information Control Problems in Manufacturing Technology, pp. 183–187. (1989).Google Scholar
  4. 4.
    P. Chedmail, “Synthèse de Robots et de Sites Robotisés. Modélisation de Robots Souples”. Thèse de Doctorat d’Etat, Univ de Nantes, E.N.S.M, France. (1990).Google Scholar
  5. 5.
    S. Zeghloul and J.A. Pamanes-Garcia, “Multi-criteria optimal placement of robots in constrained environments”. Robotica Int J Vol 11, pp. 105–110. (1993).CrossRefGoogle Scholar
  6. 6.
    J. Yoshikawa, “Manipulability of robotic mechanisms”. The Int. J. of Robotic Research, Vol. 4, no 2, pp. 3–9. (1985).CrossRefMathSciNetGoogle Scholar
  7. 7.
    S. Zeghloul, “Developpement d’un Système de C.A.O-Robotique Integrant la Planification de Tâches et la Synthèse de Sites Robotisés”. Thèse de Doctorat d’Etat, Univ de Poitiers, France (1991).Google Scholar
  8. 8.
    M. J. Box, “A new method of constrained optimization and a comparison with other methods”. Computer J., Vol. 8, pp. 42–52. (1965).CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Wien 1995

Authors and Affiliations

  • S. Zeghloul
    • 1
  • B. Blanchard
    • 1
  • J. A. Pamanes
    • 1
  1. 1.U.R.A. — C.N.R.S.PoitiersFrance

Personalised recommendations