Advertisement

Methods for Restoring Aquifers

  • U. Maione
Part of the International Centre for Mechanical Sciences book series (CISM, volume 364)

Abstract

The paper presents an overview of the most common methods for the reclamation of polluted aquifers. They can be divided in hydraulic and structural methods: the first ones are based on the use of pumping or recharging wells causing a local variation of the flow field and forcing the pollutant to move towards the extraction point or far from the zones to be protected. The structural methods consists in ground or surface constructions which permanently affect the groundwater flow. Vantages and disadvantages of the two methods are compared. Afterwards the use of the mathematical modelling for the design and simulation of the reclamation measures is discussed, with a particular attention to the recent stochastic theories.

Keywords

Groundwater Flow Dispersion Coefficient Stochastic Theory Impermeable Boundary Longitudinal Dispersion Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Canter L.W. and Knox R.C.: Groundwater Pollution Control, Lewis Publ. Inc., 1985.Google Scholar
  2. 2.
    De Paoli B. and Marcellino P.: Esperienze di isolamento mediante diaframmi, in: Proc. of the Course on Traitment and restoring of polluted terrains (Trattamento e recupero dei terreni contaminati), Dip. of Hydraulic, Environmental and Surveying Eng., Politecnico di Milano. 1992.Google Scholar
  3. 3.
    Hunt B., Mathematical analysis of groundwater resources, Butterworths, 1983.Google Scholar
  4. 4.
    Bear J. and Verrujt A. Modeling Groundwater Flow and Pollution, D. Reidel Publ. Com., Dordrecht-Boston-Lancaster-Tokyo, 1987.Google Scholar
  5. 5.
    GWMC - International Groundwater Modeling Center, Price List of Publications and Services Available from IGWMC, Holcomb Research Institute, Indianapolis 1989.Google Scholar
  6. 6.
    Gambolati G., Pini G. and Tucciarelli T., A 3-D finite element conjugate gradient model of subsurface flow with automatic mesh generation, Adv. in Wat. Res., Vol. 1, 1986.Google Scholar
  7. 7.
    Dougherty D.E., PCG solutions of flow problems in random porous media using mixed finite elements, Adv. in Wat. Res.. Vol. 13, n. 1, 1990.Google Scholar
  8. 8.
    Giura R. and De Wrachien D. A mathematical model simulating the multilayer system of aquifers of the alluvial plain bounded by the riv3rs Sesia, Ticino and Po, Proc. of the Int. Conf. on Modern Approach to Groundwater Resources Management, Capri 1982.Google Scholar
  9. 9.
    Delhomme J.P.: Spatial variability and uncertainty in groundwater flow parameters: a geostatistical approach, Water Resources Research, 15 (2), 1979, 269–280.CrossRefGoogle Scholar
  10. 10.
    Dagan G.: Statistical theory of groundwater flow and transport: pore to laboratory, laboratory to formation, and formation to regional scale, Water Resources Research, 22 (9), 1986, 120S - 134S.CrossRefGoogle Scholar
  11. 11.
    Salandin P. and Rinaldo A.:Numerical experiments on dispersion in heterogeneous porous media, in Computational Methods in Subsurface Hydrology; ed. G. Gambolati, A. Rinaldo, C.A. Brebbia, W.C. Gray and G.F. Pinder, Computational Mechanics Publications and Springer, 1990.Google Scholar
  12. 12.
    Salandin P. and Fiorotto V.: Numerical simulation of non ergodic transport in natural formations, Proc. of the XXV IAHR Congress. Tokyo Sept. 1993.Google Scholar
  13. 13.
    Guadagnini A.. Maione U., Martinoli A. and Tanda M.G.: Sull’applicazione della teoria stocastica del trasporto di inquinanti a singole realizzazioni di mezzi porosi eterogenei Proc. of the XXIII Convegno di Idraulica e Costruzioni Idrauliche. Firenze. Sept. 1993.Google Scholar
  14. 14.
    Butera I., Greta E., Maione U. and Tanda M.G.: Processi di trasporto in campi eterogenei bidimensionali con condizionamento in trasmissività e carichi. Parte I e II. Proc. of the XXIV Convegno di Idraulica e Costruzioni Idrauliche. Napoli Sept. 1994.Google Scholar
  15. 15.
    Mackay D.M., Freyberg D.L. Roberts I.V. and Cherry J.A. A natural gradient experiment on solute transport in a sand aquifer Wat. Res. Vol. 22 n. 13 1986.Google Scholar

Copyright information

© Springer-Verlag Wien 1995

Authors and Affiliations

  • U. Maione
    • 1
  1. 1.Technical University of MilanMilanItaly

Personalised recommendations