Design of Ground Water Monitoring Quality Networks

  • J. C. Tracy
  • T. J. Van Lent
  • M. A. Mariño
Part of the International Centre for Mechanical Sciences book series (CISM, volume 364)


A brief review of approaches to the design of subsurface water quality monitoring networks is presented. A theoretical discussion about methods to estimate parameters related to information based design approaches is presented. A hypothetical problem is then constructed to analyze the effect that different estimation procedures have on extending the design of a monitoring network. Results of this analysis indicate that although different parametric estimation procedures can produce significantly different parameter estimates, the resulting monitoring network design will be relatively unaffected.


Covariance Model Contaminant Concentration Data Increment Parametric Estimation Procedure Monitaring Network Design 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Loaiciga, H. A., R. J. Charbeneau, L. G. Everett, G. E. Fogg, B. F. Hobbs, and S. Rouhani: Review of ground-water quality monitoring network design. J. Hydraul. Engr., 118 (1992), 11–37.CrossRefGoogle Scholar
  2. 2.
    Everett, L. G.: Ground Water Monitoring, General Electric Company, Schenectady, New York 1980.Google Scholar
  3. 3.
    U.S. Environmental Protection Agency: Ground Water Monitoring Technical Enforcement Guidance Document, Office of Solid Waste and Emergency Response, Washington, D.C. 1986.Google Scholar
  4. 4.
    Gilbert, R. O.: Statistical Methods for Environmental Pollution Monitoring, Van-Nostrand-Reinhold Co., New York, NY 1987.Google Scholar
  5. 5.
    Ahfeld, D. P. and G. F. Pinder: A Ground Water Monitoring Network Design Algorithm, Report 87-WR-4, Department of Civil Engineering and Operations Research, Princeton, New Jersey 1988.Google Scholar
  6. 6.
    Hsueh, Y. W., and R. Rajagopal: Modeling ground water quality decisions, Ground Water Monitoring Review, Fall, 121–134 (1988).Google Scholar
  7. 7.
    Knopman, D. S., and C. J. Voss: Discrimination among one-dimensional models of solute transport in porous media: Implications for sampling design, Water Resour. Res., 24 (1988), 1859–1876.CrossRefGoogle Scholar
  8. 8.
    Hudak, P. F., H. A. Loaiciga, and M. A. Marino: Regional Scale Ground Water Quality Monitoring: Methods and Case Studies, California Water Resources Center, University of California, Contribution 203 1993.Google Scholar
  9. 9.
    Aboufirassi, M., and M. A. Marino: Krigin of water levels in the Souss Aquifer, Morocco, Math. Geol., 15 (1983), 537–551.CrossRefGoogle Scholar
  10. 10.
    Aboufirassi, M. and M. A. Marino: Cokriging of aquifer transmissivities from field measurements of transmissivity and specific capacity, Math. Geol., 16 (1994), 19–35.CrossRefGoogle Scholar
  11. 11.
    Rouhani, S.: Variance reduction analysis, Water Resour. Res., 21 (1985), 837–845.CrossRefGoogle Scholar
  12. 12.
    Ben-Jemaa, F., M. A. Marino, and H. A, Loaiciga: Multivariate geostatistical design of ground water monitoring networks, J. of Water Resour. Plan. and Manag., ASCE, 120 (1994), 505–522.CrossRefGoogle Scholar
  13. 13.
    Matheron, G.: The intrinsic random function and their applications, Adv. Appl. Prob., 5 (1973), 539–568.MathSciNetGoogle Scholar
  14. 14.
    Journel, A. and Huijbregts, C.: Mining Geostatistics, Academic Press, New York, NY 1978.Google Scholar
  15. 15.
    Sadeghipour, J. and W. W-G. Yeh: Parameter identification of ground water aquifer models: A generalized least squares approach, Water Resour. Res., 20 (1984), 971–979.CrossRefGoogle Scholar
  16. 16.
    Carrera, J. and S. P. Neuman: Estimation of aquifer parameters under transient and steady-state conditions: 1. Maximum likelihood method incorporating prior information, Water Resour. Res., 22 (1986), 199–210.CrossRefGoogle Scholar
  17. 17.
    Loaiciga, H. A. and M. A. Marino: The inverse problem for confined aquifer flow identification and estimation with extensions, Water Resour. Res., 23 (1987), 92–104.CrossRefGoogle Scholar
  18. 18.
    Starks, T. and J. Fang: The effect of drift on the experimental semivariogram, J. Int. Assoc. Math. Geol., 14 (1982), 309–319.MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kitanidis, P.: Statistical estimation of polynomial generalized covariance functions and hydrologic applications, Water Resour. Res., 19 (1983), 909–921.CrossRefGoogle Scholar
  20. 20.
    Kitanidis, P. and W. Lane: Maximum likelihood parameter estimation of hydrologic spatial processes by the Gauss-Newton method, J. Hydrol., 79 (1985), 53–71.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1995

Authors and Affiliations

  • J. C. Tracy
    • 1
  • T. J. Van Lent
    • 1
  • M. A. Mariño
    • 2
  1. 1.South Dakota State UniversityBrookingsUSA
  2. 2.University of California at DavisDavisUSA

Personalised recommendations