Advertisement

Some Considerations about Uniqueness in the Identification of Distributed Transmissivities of a Confined Aquifer

  • M. Giudici
  • G. Morossi
  • G. Parravicini
  • G. Ponzini
Part of the International Centre for Mechanical Sciences book series (CISM, volume 364)

Abstract

The identification of the transmissivity of a confined aquifer can be achieved by the solution of a generally ill-posed inverse problem when measurements of piezometric head and source term are available. Herewith some classical results are considered; the most promising approach consists of the simultaneous utilisation of several sets of data, namely piezometric heads and source terms relative to different steady hydraulic conditions of the aquifer. The main advantage of this approach is that the required data are the easiest to measure in hydrogeological field applications.

Two discrete formulations of the inverse problem, within the framework of finite difference schemes, are reviewed; the first one considers the internode transmissivities as the unknowns of the inverse problem, whereas the second considers the node transmissivities as unknowns. The relationship between internode and node transmissivities together with advantages and drawbacks of these two formulations of the inverse problem are discussed.

Keywords

Inverse Problem Source Term Finite Difference Scheme Vertical Electrical Sounding Aquifer Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bear, J.: Dynamics of fluids in porous media, American Elsevier, New York 1972.MATHGoogle Scholar
  2. 2.
    Yeh, W.-G.W.: Review of parameter identification procedures in groundwater hydrology: the inverse problem, Water Resour. Res., 22 (1986), 95–108.CrossRefGoogle Scholar
  3. 3.
    Carrera, J.: State of art of the inverse problem applied to the flow and solute transport equations, In: Groundwater flow and quality modeling (Eds. E. Custodio et al.), Reidel, Dordrecht 1988, 549–583.CrossRefGoogle Scholar
  4. 4.
    Chavent, G.: Analyse fonctionnelle et identification de coefficients répartis dans les équations aux dérivées partielles, Thése d’Etat, Facultè des Sciences de Paris, 1971.MATHGoogle Scholar
  5. 5.
    Richter, G.R.: An inverse problem for the steady state diffusion equation, SIAM J. Math. Anal., 41 (1981), 210–221.CrossRefMATHGoogle Scholar
  6. 6.
    Richter, G.R.: Numerical identification of spatially varying diffusion coefficient, Mathematics of Computation, 36 (1981), 375–386.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Emsellem, Y. and G. de Marsily: An automatic solution for the inverse problem, Water Resour. Res., 7 (1971), 1264–1283.CrossRefGoogle Scholar
  8. 8.
    Chicone, C. and J. Gerlach: A note on the identifiability of distributed parameters in elliptic equations, SIAM J. Math. Anal., 18 (1987), 1378–1384.MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Sagar, B., Yakowitz, S. and L. Duckstein: A direct method for the identification of the parameters of dynamic nonhomogeneous aquifers, Water Resour. Res., 11 (1975), 563–570.CrossRefGoogle Scholar
  10. 10.
    Parravicini, G., Giudici, M., Morossi, G. and G. Ponzini: Minimal assignment of phenomenological coefficients and uniqueness for an inverse problem, Preprint IFUM 480/FT, Dipartimento di Fisica, Università di Milano, Milan, Italy, (1994).Google Scholar
  11. 11.
    Giudici, M., Morossi, G., Parravicini, G. and G. Ponzini: A new method for the identification of distributed transmissivities, Preprint IFUM 481/FT, Dipartimento di Fisica, Università di Milano, Milan, Italy, (1994).Google Scholar
  12. 12.
    Samarskij, A. and V. Andreev: Méthodes aux différences pour equation elliptiques, Mir, Moskow 1978.Google Scholar
  13. 13.
    Carrera, J. and S.P. Neuman: Estimation of aquifer parameters under transient and steady-state conditions: 3. application to synthetic and field data, Water Resour. Res., 22 (1986), 228–242.CrossRefGoogle Scholar
  14. 14.
    Scarascia, S. and G. Ponzini: An approximate solution for the inverse problem in hydraulics, L’Energia Elettrica, 49 (1972), 518–531.Google Scholar
  15. 15.
    Carrera, J. and S.P. Neuman: Estimation of aquifer parameters under transient and steady-state conditions: 1, maximum likelihood method incorporating prior information, Water Resour. Res., 22 (1986), 199–210.CrossRefGoogle Scholar
  16. 16.
    Carrera, J. and S.P. Neuman: Estimation of aquifer parameters under transient and steady-state conditions: 2. uniqueness, stability and solution algorithms, Water Resour. Res., 22 (1986), 211–227.CrossRefGoogle Scholar
  17. 17.
    Emsellem, Y. and G. de Marsily: Reply to “Comments on ‘An authomatic solution for the inverse problem’ by Y. Emsellem and G. de Marsily” by D. Kleinecke, Water Resour. Res., 8 (1972), 1130–1131.Google Scholar

Copyright information

© Springer-Verlag Wien 1995

Authors and Affiliations

  • M. Giudici
    • 1
  • G. Morossi
    • 2
  • G. Parravicini
    • 1
  • G. Ponzini
    • 1
  1. 1.University of MilanMilanItaly
  2. 2.Consorzio Milano RicercheMilanItaly

Personalised recommendations