Skip to main content

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 356))

  • 145 Accesses

Abstract

Dissipative materials are modelled as linear viscoelastic and the thermodynamic restrictions are investigated in detail. For definiteness, attention is mainly confined to solids. Some concepts about thermodynamics and dissipativity in materials with memory are re-visited. Next wave propagation is considered and emphasis is given to the consequences of thermodynamic restrictions on the amplitude evolution. Waves are described as surface discontinuities, time-harmonic waves, rays. The known properties of surface discontinuities are recalled to emphasize the exponential attenuation induced by thermodynamics. Particular attention is then addressed to the description of time-harmonic inhomogeneous waves and asymptotic rays in isotropic and anisotropic solids. Recent results are exhibited along with some work in progress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fabrizio, M. and A. Morro: Mathematical Problems in Linear Viscoelasticity, SIAM, Philadelphia, 1992.

    Book  MATH  Google Scholar 

  2. Caviglia, G. and A. Morro: Inhomogeneous Waves in Solids and Fluids, World Scientific, Singapore, 1992.

    Book  MATH  Google Scholar 

  3. Boltzmann, L.: Zur Theorie der elastichen Nachwirkung, Sitzber. Kaiserl. Akad. Wiss. Wien, Math.-Naturw. Kl. 70 (1874), 275–300.

    Google Scholar 

  4. Lamb, J. and J. Richter: Anisotropic acoustic attenuation with new measurements for quartz at room temperatures, Proc. R. Soc. London A 293 (1966), 479–492.

    Article  Google Scholar 

  5. Truesdell, C.: Rational Thermodynamics, Springer, Berlin, 1984.

    Book  MATH  Google Scholar 

  6. Morro, A. and M. Vianello: Minimal and maximal free energy for materials with memory, Boll. Un. Mat. Ital. A 4 (1990), 45–55.

    MathSciNet  MATH  Google Scholar 

  7. Day, W. A.: An objection to using entropy as a primitive concept in continuum thermodynamics, Acta Mech. 27 (1977), 251–255.

    Article  MATH  Google Scholar 

  8. Caviglia, G. and A. Morro: Dissipative effects on wave propagation in viscoelastic solids, Eur. J. Mech. A/Solids 12 (1993), 387–402.

    MATH  Google Scholar 

  9. Leitman, M. J. and G. M. C. Fisher: The linear theory of viscoelasticity, in: Encyclopedia of Physics, vol. VIa/3 (Ed. C. Truesdell ), Springer, Berlin, 1973.

    Google Scholar 

  10. Chen, P. and A. Morro: On induced discontinuities in a class of linear materials with internal state parameters, Meccanica 22 (1987), 14–18.

    Article  MATH  Google Scholar 

  11. Fisher, G. M. C. and M. E. Gurtin: Wave propagation in the linear theory of viscoelasticity, Quart. Appl. Math. 23 (1965), 257–263.

    MATH  Google Scholar 

  12. Morro, A.: Temperature waves in rigid materials with memory, Meccanica 12 (1977), 73–77.

    Google Scholar 

  13. Fisher, G. M. C.: The decay of plane waves in the linear theory of viscoelasticity, Brown University, Report NONR 562 (40)/2, Providence, RI, 1965.

    Google Scholar 

  14. Lockett, F. J.: The reflection and refraction of waves at an interface between viscelastic materials, J. Mech. Phys. Solids 10 (1962), 58–64.

    MathSciNet  Google Scholar 

  15. Buchen, P. W.: Plane waves in linear viscoelastic media, Geophys. J. R. Astr. Soc. 23 (1971), 531–542.

    Article  MATH  Google Scholar 

  16. Currie, P. K., M. A. Hayes and P. M. O’Leary: Viscoelastic Rayleigh waves, Quart. Appl. Math. 35 (1977), 35–53.

    MATH  Google Scholar 

  17. Currie, P. K. and P. M. O’Leary: Viscoelastic Rayleigh waves II, Quart. Appl. Math. 35 (1978), 445–454.

    MATH  Google Scholar 

  18. Boulanger, Ph. and M. Hayes: Inhomogeneous plane waves in viscous fluids,/Continuum Mech. Thermodyn. 2 (1990), 1–9.

    MathSciNet  MATH  Google Scholar 

  19. Poirée, B.: Complex harmonic plane waves, in: Physical Acoustics (Eds. O. Leroy and M. A. Breazeale), Plenum, New York, 1991.

    Google Scholar 

  20. Aki, K. and P. G. Richards: Quantitative Seismology I Freeman, San Francisco, 1980; p. 170.

    Google Scholar 

  21. Morro, A.: Wave propagation in dissipative solids, Proc. Workshop “Advanced mathematical tools in metrology”, Turin, 1993.

    Google Scholar 

  22. Hayes, M.: Inhomogeneous plane waves, Arch. Rational Mech. Anal. 85 (1984), 41–79.

    Google Scholar 

  23. Fedorov, F. I.: Theory of Elastic Waves in Crystals, Plenum, New York, 1968.

    Book  Google Scholar 

  24. Musgrave, M. J. P.: Crystal Acoustics, Holden Day, San Francisco, 1970.

    MATH  Google Scholar 

  25. Crampin, S.: A review of wave motion in anisotropic and cracked elastic media, Wave Motion 3 (1981), 343–391.

    Article  MATH  Google Scholar 

  26. Kerner, C., B. Dyer and M. Worthington: Wave propagation in a vertical transversely isotropic medium: field experiment and model study, Geophys. J. 97 (1989), 295–305.

    Article  Google Scholar 

  27. Chadwick, P.: Wave propagation in transversely isotropic elastic media I. Homogenous plane waves, Proc. Roy. Soc. London A 422 (1989), 23–66.

    Google Scholar 

  28. Hayes, M. A. and R. S. Rivlin: Longitudinal waves in a linear viscoelastic material, ZAMP 23 (1972), 153–156.

    Article  MATH  Google Scholar 

  29. Hayes, M. A. and R. S. Rivlin: Plane waves in linear viscoelastic materials, Q. Appl. Math. 32 (1974), 113–121.

    MATH  Google Scholar 

  30. Mainardi, F.: Wave propagation in viscoelastic media, Pitman, Boston, 1982.

    MATH  Google Scholar 

  31. Caviglia, G. and A. Morro: Inhomogeneous waves in anisotropie dissipative solids,Continuum Mech. Thermodyn., to appear.

    Google Scholar 

  32. Caviglia, G. and A. Morro: Asymptotic ray theory in heterogeneous viscoelastic solids, Q. Jl Mech. appl. Math. 46 (1993), 569–582.

    Article  MathSciNet  MATH  Google Scholar 

  33. Caviglia, G. and A. Morro: Asymptotic rays in pre-stressed, anisotropie, dissipative solids,in preparation.

    Google Scholar 

  34. Bleistein, N.: Mathematical Methods for Wave Phenomena, Academic Press, London, 1984.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Wien

About this chapter

Cite this chapter

Morro, A. (1995). Wave Solutions in Linear Viscoelastic Materials. In: Graham, G.A.C., Walton, J.R. (eds) Crack and Contact Problems for Viscoelastic Bodies. International Centre for Mechanical Sciences, vol 356. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2694-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2694-3_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82686-7

  • Online ISBN: 978-3-7091-2694-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics