General Methods in Non-Inertial Viscoelastic Boundary Value Problems

  • J. M. Golden
  • G. A. C. Graham
Part of the International Centre for Mechanical Sciences book series (CISM, volume 356)


We will deal in these lecture notes with the behaviour of viscoelastic solids under the action of different boundary loading configurations. Strains will be assumed to be sufficiently small so that the linear approximation is valid. Also, inertial effects are generally assumed to be neglected, though occasional remarks are included on the effects of their inclusion.


Plane Strain Condition Crack Face Correspondence Principle Convolution Product Partial Closure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Alblas, J.B., Kuipers, M.: The contact problem of a rigid cylinder rolling on a thin viscoelastic layer, Int. J. Eng. Sci., 8 (1970), 363–380.CrossRefMATHGoogle Scholar
  2. [2]
    Bowie, O.L., Freese, C.E.: On the `overlapping’ problem in crack analysis, Eng. Fracture Mech., 8 (1976), 373–379.CrossRefGoogle Scholar
  3. [3]
    Comninou, M., Dundurs, J.: On the frictional contact in crack analysis. Eng. Fracture Mech., 12 (1979), 117–123.CrossRefGoogle Scholar
  4. [4]
    Fan, H.Z., Golden, J.M., Graham, G.A.C.: The problem of several indentors moving on a viscoelastic half-plane, Submitted for publication, 1994.Google Scholar
  5. [5]
    Ferry, J.D.: Viscoelastic Properties of Polymers, 2nd ed., Wiley, New York 1970.Google Scholar
  6. [6]
    Galin, L.A.: Contact Problems in the Theory of Elasticity (Ed. I.N. Sneddon) [English translation by H. Moss], Department of Mathematics, North Carolina State University, Releigh 1961.Google Scholar
  7. [7]
    Gladwell, G.M.L: Contact Problem in the Classical Theory of Elasticity, Sijthoff and Noordhoff, Alphen aan den Rijn 1980.Google Scholar
  8. [8]
    Golden, J.M.: Hysteretic friction of a plane punch on a half-plane with arbitrary viscoelastic behaviour, Q.J. Mech. Appl. Math. 30 (1977), 23–49.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    Golden, J.M.: The problem of a moving rigid punch on an unlubricated viscoelastic half-plane, Q. J. Mech. Appl. Math. 32 (1979), 25–52.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    Golden, J.M.: Frictional viscoelastic contact problems, Q.J. Mech. Appl. Math. 39 (1986), 125–137.MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    Golden, J.M., Graham, G.A.C.: Crack in a viscoelastic field of pure bending, Int. J. Eng. Sci. 22 (1984), 801–811.CrossRefMATHGoogle Scholar
  12. [12]
    Golden, J.M., Graham, G.A.C.: The transient quasi-static plane viscoelastic moving load problem, Int. J. Eng. Sci. 25 (1987a), 65–84.MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    Golden, J.M., Graham, G.A.C.: The steady-state plane normal viscoelastic contact problem, Int. J. Eng. Sci. 25 (1987b), 277–291.MathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    Golden, J.M., Graham, G.A.C.: Boundary Value Problem in Linear Viscoelasticity, Springer-Verlag, Berlin, Heidelberg 1988.Google Scholar
  15. [15]
    Golden, J.M., Graham, G.A.C.: A fixed length crack in a sinusoidally loaded general viscoelastic medium, in: Continuum Mechanics and Its Applications (Eds. G.A.C. Graham and S.K. Malik ), Hemisphere Publishing Corporation, Washington, D.C. 1989, 171–188.Google Scholar
  16. [16]
    Golden, J.M., Graham, G.A.C.: Stress, strain and area-controlled modes for the steady-state normal viscoelastic contact problem, in: Proceedings of the 11th International Annual Conference of the Canadian Applied Mathematices Society (Ed. M. Rahman ), Computational Mechanics Publications, Southampton 1990, 739–753.Google Scholar
  17. [17]
    Golden, J.M., Graham, G.A.C.: Asymmetric steady-state solutions for a crack in à viscoelastic field of pure bending, Int. J. Eng. Sci. 29 (1991), 223–235.CrossRefMATHGoogle Scholar
  18. [18]
    Golden, J.M., Graham, G.A.C.: Energy loss in steady-state solutions to viscoelastic crack problems, Canadian Applied Mathematics Quarterly 2 (1994a), 1–26.MathSciNetMATHGoogle Scholar
  19. [19]
    Golden, J.M., Graham, G.A.C.: The viscoelastic moving contact problem with inertial effects included, Submitted for publication, (1994b).Google Scholar
  20. [20]
    Golden, J.M., Graham, G.A.C., Lan, Q.: Three-dimensional steady-state indentation problem for a general viscoelastic material, Q. Appl. Math., to appear, 1994.Google Scholar
  21. [21]
    Golden, J.M., Graham. G.A.C., M. Trummer: Steady-state solutions for a viscoelastic crack under an alternating bending moment, Int. J. Eng. Sci. 32 (1994), 899–924.MathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    Graham, G.A.C.: The contact problem in the linear theory of viscoelastcity, Int. J. Eng. Sci. 3 (1965), 27–46.CrossRefMATHGoogle Scholar
  23. [23]
    Graham, G.A.C.: The contact problem in the linear theory of viscoelastcity where the time dependent contact area has any number of maxima and minima, Int. J. Eng. Sci. 5 (1967), 495–514.CrossRefMATHGoogle Scholar
  24. [24]
    Graham, G.A.C.: The correspondence principle of linear viscoelasticity theory for mixed boundary value problems involving time-dependent boundary regions, Q. Appl. Math. 26 (1968), 167–174.MATHGoogle Scholar
  25. [25]
    Graham, G.A.C.: Stresses and displacements in cracked linear viscoelastic bodies that are acted upon by alternating tensile and compressive loads, Int. J. Eng. Sci. 14 (1976), 1135–1142.CrossRefMATHGoogle Scholar
  26. [26]
    Graham, G.A.C.: Viscoelastic crack in a field of pure bending, Mech. Res. Commun. 9 (1982), 219–226.MATHGoogle Scholar
  27. [27]
    Graham, G.A.C., Golden, J.M.: The three-dimensional steady-state viscoelastic indentation problem, Int. J. Eng. Sci. 26 (1988a), 121–126.CrossRefMATHGoogle Scholar
  28. [28]
    Graham, G.A.C., Golden, J.M.: The generalized partial correspondence principle in linear viscoelasticity, Q. Appl. Math.46 (1988b), 527–538; 49 (1991), 397.MathSciNetGoogle Scholar
  29. [29]
    Graham, G.A.C., Sabin, G.C.W.: The correspondence principle of linear viscoelasticity for problems that involve time-dependent regions, Int. J. Eng. Sci. 11 (1973), 123–140.MathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    Graham, G.A.C., Sabin, G.C.W.: Steady state solutions for a cracked standard linear viscoelastic body, Mech. Res. Commun. 8 (1981), 361–368.MATHGoogle Scholar
  31. [31]
    Green, A.E., Zerna, W.: Theoretical Elasticity, Oxford University Press, 1968.Google Scholar
  32. [32]
    Gross, G.: Mathematical Structure of the Theories of Viscoelasticity, Hermann Cte, Paris 1953.Google Scholar
  33. [33]
    Gurtin, M.E., Sternberg, E.: On the linear theory of viscoelasticity, Arch. Rat. Mech. Anal. 2 (1962), 291–356.MathSciNetCrossRefGoogle Scholar
  34. [34]
    Harvey, R.B.: On the deformation of a viscoelastic cylinder rolling without slipping, Q. J. Mech. Appl. Math. 28 (1975), 1–24.MathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    Hunter, S.C.: The Hertz problem for a rigid spherical indentor and a viscoelastic half-space, J. Mech. Phys. Solids 8 (1960), 219–234.MathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    Hunter, S.C.: The rolling contact of a rigid cylinder with a viscoelastic half-space, J. Appl. Mech. 28 (1961), 611–617.CrossRefMATHGoogle Scholar
  37. [37]
    Kalker, J.J.: Aspects of contact mechanics, in: The Mechanics of the Contact Between Deformable Bodies (Eds. D. de Pater, J.J. Kalker ), Delft University Press 1975, 1–25.CrossRefGoogle Scholar
  38. [38]
    Kalker, J.J.: A survey of the mechanics of contact between solid bodies, J. Appl. Math. Phys. (ZAMP) 57 (1977), 13–17.Google Scholar
  39. [39]
    Kikuchi, N., Oden, J.T.: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, SIAM, Philadelphia 1988.Google Scholar
  40. [40]
    Margetson, J.: Rolling contact of a smooth viscoelastic strip between rotating rigid cylinders, Int. J. Mech. Sci. 13 (1971), 207–215.CrossRefMATHGoogle Scholar
  41. [41]
    Margetson, J.: Rolling contact of a rigid cylinder over a smooth elastic or viscoelastic layer, Acta Mech. 13 (1972), 1–9.CrossRefMATHGoogle Scholar
  42. [42]
    Morland, L.W.: A plane problem of rolling contact in linear viscoelasticity theory, J. Appl. Mech. 29 (1962), 345–352.CrossRefMATHGoogle Scholar
  43. [43]
    Morland, L.W.: Exact solutions for rolling contact between viscoelastic cylinders, Q. J. Mech. Appl. Math. 20 (1967), 73–106.MathSciNetCrossRefMATHGoogle Scholar
  44. [44]
    Morland, L.W.: Rolling contact between dissimilar viscoelastic cylinders, Q. Appl. Math. 25 (1968), 363–376.MATHGoogle Scholar
  45. [45]
    Muskhelishvili, N.I.: Some Basic Problems of the Mathematical Theory of Elasticity, 4th ed. [English translation by J.R.M. Radok], Noordhoff, Groningen 1963.Google Scholar
  46. [46]
    Nachman, A., Walton, J.R.: The sliding of a rigid indentor over a power law viscoelastic layer, J. Appl. Mech. 45 (1978), 111–113.CrossRefMATHGoogle Scholar
  47. [47]
    Oden, J. T., Lin, T.L.: On the general rolling contact problem for finit deformations of a viscoelastic cylinder, Computer Methods in Applied Mechanics and Engineering 57 (1986), 297–367.MathSciNetCrossRefMATHGoogle Scholar
  48. [48]
    Sabin, G.C.W., Graham, G.A.C.: The normal aging viscoelastic contact problem, Int. J. Eng. Sci. 18 (1980), 751–757.MathSciNetCrossRefMATHGoogle Scholar
  49. [49]
    Sih, G.C.(ed): Methods of Analysis and Solution of Crack Problems, Noorhoff, Leyden 1973.Google Scholar
  50. [50]
    Sih, G.C., Liebowitz, H.: Mathematical theories of brittle fracture, in: Fracture: An Advanced Treaties, Vol. II (Ed. H. Liebowitz ), Academic, New York 1968, 67–190.Google Scholar
  51. [51]
    Sneddon, I.N.: Fourier Transforms, McGraw-Hill, New York 1951.Google Scholar
  52. [52]
    Sokolnikoff, I.S.: Mathematical Theory of Elasticity, 2nd ed., McGraw-Hill, New York 1956.MATHGoogle Scholar
  53. [53]
    Ting, T.C.T.: Contact problems in the linear theory of viscoelasticity, J. Appl. Mech. 35 (1968), 248–254.CrossRefMATHGoogle Scholar
  54. [54]
    Ting, T.C.T.: A mixed boundary value problem in viscoelasticity with time-dependent boundary regions, in: Proseeding of the Eleventh Midwestern Mechanics Conference (Eds. H.J. Weiss, D.F. Young, W.F. Riley, T.R. Rogge ), Iowa University Press 1969, 591–598.Google Scholar
  55. [55]
    Walton, J.R.: The sliding with Coulomb friction of a rigid indentor over a power-law inhomogeneous linearly viscoelastic half-plane, J. Appl. Mech. 51 (1984), 289–293.CrossRefMATHGoogle Scholar
  56. [56]
    Walton, J.R., Nachman, A. Schapery, R.A.: The sliding of a rigid indentor over a power-law viscoelastic half-space, Q. J. Mech. Appl. Math. 31 (1978), 296–321.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Wien 1995

Authors and Affiliations

  • J. M. Golden
    • 1
  • G. A. C. Graham
    • 2
  1. 1.Dublin Institute of TechnologyDublinIreland
  2. 2.Simon Fraser UniversityBurnabyCanada

Personalised recommendations