Existence and Uniqueness Results for Viscoelastic Materials

  • M. Fabrizio
Part of the International Centre for Mechanical Sciences book series (CISM, volume 356)


In this course some analytical problems present in the mathematical theory of the viscoelasticity will be studied. In particular we consider:
  • the definition of materials with fading memory, without the use of a-priori topologies on the history space, but only impose directly this condition of fading memory on the constitutive functional,

  • the derivation of free energies for the linear problem and their connection with the norms of history spaces

  • a theorem on the domain of dependence proved by means of the free energies properties; this theorem asserts the finite velocity of the signal and assures the hyperbolicity of the integrodifferential system

  • theorems of existence, uniqueness and asymptotic stability for the quasi-static and dynamical problem of linear viscoelasticity.


Asymptotic Stability Uniqueness Result Viscoelastic Material Relaxation Function Positive Definiteness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. FABRIZIO, C. GIORGI, A. MORRO, Free energies and dissipation properties for sistems with memory,Arch. Rational Mech. Anal., 125 (1994), 341–373.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    M. FABRIZIO, A. MORRO, Mathematical Problems in Linear Viscoelasticity,SIAM, Philadelphia, 1992.Google Scholar
  3. [3]
    V. VOLTERRA, Sulle equazioni integro-differenziali della teoria dell’elasticità, Atti Reale Accad. Lincei, 18 (1909), 295–301.Google Scholar
  4. [4]
    V. VOLTERRA, Equazioni integro-differenziali della elasticità nel caso della isotropia, Atti Reale Accad. Lincei, 18 (1909), pp. 577–586.Google Scholar
  5. [5]
    V. VOLTERRA, Lesons sur les Fonctions des Lignes, Gauthier-Villars, Paris, 1913.Google Scholar
  6. [6]
    C. TRUESDELL AND W. NOLL, The Classical Field Theories, in Encyclopedia of Physics, S. Flügge, ed., vol. III/3, Springer, Berlin, 1965.Google Scholar
  7. [7]
    V. Volterra, Theory of Functionals, Blackie & Son Limited, London and Glasgow, 1930.Google Scholar
  8. [8]
    D. GRAFFI, Sui problemi dell’ereditarietà lineare, Nuovo Cimento, 5 (1928), pp. 53–71.Google Scholar
  9. [9]
    Baggett, L., & W. Fulks, Fourier Analysis. Api Anjou Press, Boulder, 1979.Google Scholar
  10. [10]
    D. GRAFFI, Sull’espressione dell’energia libera nei materiali visco-elastici lineari, Ann. Mat. Pura Appl., 98 (1974), pp. 273–279.Google Scholar
  11. [11]
    D. GRAFFI, Sull’espressione analitica di alcune grandezze termodinamiche nei materiali con memoria, Rend. Sein. Mat. Univ. Padova, 68 (1982), pp. 17–29.MathSciNetMATHGoogle Scholar
  12. [12]
    Day, A., Reversibility, recoverable work and free energy in linear viscoelasticity. Quart. J. Mech. Appl. Math. 23, 1–15 (1970)MATHGoogle Scholar
  13. [13]
    G. DUVAUT AND J. LIONS, Les inéquations en Mécanique et en P hysique, Dunod, Paris, 1972.Google Scholar
  14. [14]
    C.M. DAFERMOS, On abstract Volterra equations with applications to linear viscoelasticity, J. Diff. Eq., 7 (1970), pp. 554–569.Google Scholar
  15. [15]
    C.M. DAFERMOS, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), pp. 297–308.MathSciNetMATHGoogle Scholar
  16. [16]
    G. FICHERA, Avere una memoria tenace crea gravi problemi, Arch. Rational Mech. Anal., 70 (1979), pp. 101–112.MATHGoogle Scholar
  17. [17]
    G. FICHERA, Sul principio della memoria evanescente, Rend. S em. Mat. Univ. Padova, 68 (1982), pp. 245–259.MathSciNetMATHGoogle Scholar
  18. [18]
    G. FICHERA, Problemi Analitici Nuovi nella Fisica Matematica Cla ssica, Scuola Tipo-Zito Istituto Anselmi, Marigliano (Napoli ), 1985.Google Scholar
  19. [19]
    M. FABRIZIO AND A. MORRO, Thermodynamic restrictions on relaxati on functions in linear viscoelasticity, Mech. Res. Comm., 12 (1985), pp. 101–105.Google Scholar
  20. [20]
    C. GIORGI AND B. LAZZARI, Uniqueness and stability in linear viscoelasticity: some counterexamples, Proc. V Conf. Waves and Stability in Continuous Media, Sorrento, 1990.Google Scholar
  21. [21]
    G. GRIOLI, Continui con Memoria, Accad. Naz. Lincei, Roma, 1 990.Google Scholar
  22. [22]
    B. LAZZARI AND E. VUK, Un teorema di esistenza e unicità per un problema dinamico in viscoelasticità lineare, Atti Sem. Mat. Fis. Univ. Modena, 33 (1985), pp. 267–290.Google Scholar
  23. [23]
    F. TREVES, Basic Linear Partial Differential Equations, Aca demic Press, New York, 1975.MATHGoogle Scholar
  24. [24]
    G. FICHERA, Existence Theorems in Elasticity, in Encyclopedi a of Physics, C. Truesdell ed., vol. VIa/2, Springer, Heidelberg, 1972, pp. 347–389.Google Scholar
  25. [25]
    A. MORRO AND M. FABRIZIO, On uniqueness in linear viscoelastici ty: a family of counterexamples, Quart. Appl. Math., 45 (1987), pp. 263–268.Google Scholar
  26. [26]
    G. CAPRIZ, Sulla impostazione di problemi dinamici in viscoelasticità,Ref. [72], pp. 25–33.Google Scholar
  27. [27]
    E.G. VIRGA AND G. CAPRIZ, Un teorema di unicità in viscoelasticità lineare, Rend. Sem. Mat. Univ. Padova, 79 (1988), pp. 15–24.MathSciNetMATHGoogle Scholar
  28. [28]
    G. CAPRIZ AND E.G. VIRGA, Esempi di non-unicità in viscoelasticità lineare, Atti Accad. Scienze Torino, 120 (1987), pp. 81–86.MathSciNetGoogle Scholar
  29. [29]
    C. GIORGI, Alcune conseguenze delle restrizioni termodinamiche per mezzi viscoelastici lineari, Quaderno n. 6/89, Università, Dipartimento di Matematica, Brescia, 1989.Google Scholar
  30. [30]
    M. FABRIZIO AND B. LAZZARI, On the existence and the asymptotic stability of solutions for a linear viscoelastic solid system, Arch. Rational Mech. Anal., 123, (1993).Google Scholar
  31. [31]
    M. FABRIZIO AND B. LAZZARI, On asymptotic stability for linear viscoelastic fluids,to appear.Google Scholar
  32. [32]
    A. PAZY, On the applicability of Lyapunov’s theorem in Hilbert space, SIAM J. Math. Anal., 3 (1972), pp. 291–294.Google Scholar
  33. [33]
    M. SLEMROD, A hereditary partial differential equation with applications in the theory of simple fluids, Arch. Rational Mech. Anal., 62 (1976), pp. 303–321.Google Scholar
  34. [34]
    M. SLEMROD, An energy stability method for simple fluids, Arch. Rational Mech. Anal., 68 (1978), pp. 1–18.Google Scholar
  35. [35]
    R. TEMAM, Navier-Stokes Equations, North-Holland, Amsterdam, 1984.MATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 1995

Authors and Affiliations

  • M. Fabrizio
    • 1
  1. 1.University of BolognaBolognaItaly

Personalised recommendations