Advertisement

Numerical Solutions of Thermo — Hydro — Mechanical Problems

  • B. A. Schrefler
  • L. Simoni
Part of the International Centre for Mechanical Sciences book series (CISM, volume 357)

Abstract

This chapter summarizes the numerical techniques which complete the mathematical model and allow for the application in real cases. Both-spatial and temporal discretizations are presented in a general way, together with possible solution algorithms for the ensuing equations. The properties of the numerical solutions are then analyzed and used to discuss the possible choices of the field variables.

Keywords

Porous Medium Pore Pressure Effective Stress Capillary Pressure Trial Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen III, M.B., Herrera, I. and Pinder, G.F., 1988: Numerical modeling in science and engineering. Wiley, New York.Google Scholar
  2. Atkin, R.J. and Craine, R.E., 1976: Continuum theories of mixtures: basic theory and historical developments, Q. J. Mech. Appl. Math., 29, 209–244.CrossRefMATHMathSciNetGoogle Scholar
  3. Coussy O., 1991: Mecanique des milieux poreux, Editions Technip, Paris. de Boer, R. and Ehlers, W., 1990: The development of the concept of effective stress, Acta Mechanica, 83, 77–92.Google Scholar
  4. Baggio, P., Bonacina, C. and Strada M. 1993: Analisi del comportamento termo-igrometrico dei calcestruzzi cellulari con il metodo degli elementi finiti. La Termotecnica, in press.Google Scholar
  5. Bear, J. and Bachmat, Y., 1991: Introduction to Modeling of transport phenomena in porous media. Kluwer Academic Publishers, Dordrecht.MATHGoogle Scholar
  6. Bedford, A. and Drumheller, D.S., 1983: Theories of immiscible and structured mixture, Int. J. Engng. Sci., 21, 863–960.CrossRefMATHMathSciNetGoogle Scholar
  7. Bishop, A.W. and Blight, G.E., 1956: Some aspects of effective stress in saturated and partly saturated soils, Geotechnique, 13, 177–197.CrossRefGoogle Scholar
  8. Brebbia, C.A. and Dominguez, J., 1989: Boundary elements: An introductory course. Computational Mechanhcs Publications and McGraw-Hill, New York.MATHGoogle Scholar
  9. Coleman, B.D. and Noll, W., 1963: Thermodynamics of elastic materials with heat conduction and viscosity, Arch. Rat. Mech. Anal., 13, 167.CrossRefMATHMathSciNetGoogle Scholar
  10. Courant, R. and Hilbert, D., 1953: Methods of mathematical physics,Interscience Publ., New York.Google Scholar
  11. Gerald, C.F. and Wheatley, P.O., 1989: Applied numerical analysis, Addison -Wesley, Reading.MATHGoogle Scholar
  12. Lloret, A., Alonso, E.E. and Gens A., 1986: Undrained loading and consolidation analysis for unsaturated soils, Proc. Eur. Conf. Num. Meth. Geomech. 2, Stuttgart.Google Scholar
  13. Hassanizadeh, M. and Gray W.G., 1979: General conservation equations for multiphase systems: 2. Mass, momenta, energy and entropy equations, Adv. Water Resources, 2, 191–203.Google Scholar
  14. Johnson, C., 1990: Numerical solution of partial differential equations by the finite element method, Cambridge University Press, Cambridge.Google Scholar
  15. Lewis, R.W. and Schrefler, B.A., 1987: The finite element method in the deformation and consolidation of porous media, Wiley, Chichester 1987.Google Scholar
  16. Ortega, J.M. and Rheinboldt, W.C., 1983: Iterative solution of nonlinear equations in several variables, Academic Press, Inc., S. Diego.Google Scholar
  17. Pipes, L.A., 1958: Applied mathematics for engineers and physicists,McGraw, New York.Google Scholar
  18. Richtmyer, R.D. and Morton, K.W., 1967: Difference methods for initial value problems. Interscience Publ., New York.MATHGoogle Scholar
  19. Schrefler, B.A. and Simoni, L., 1988: A unified approach to the analysis of saturated-unsaturated elastoplastic porous media, in Numerical Methods in Geomechanics. Innsbruck. (ed. G. Swoboda ), Balkema, Rotterdam, 205–212.Google Scholar
  20. Schrefler, B.A., Simoni, L., Li Xikui and Zienkiewicz, O.C., 1990: Mechanics partially saturated porous media. in Numerical Methods and Constitutive Modelling in Geomechanics. CISM Lecture notes, eds. Desai C.S. and Gioda G., 169–209, Springer Verlag, Wien.Google Scholar
  21. Schrefler, B.A. and Simoni, L., 1991: Comparison between different finite element solutions for immiscible two phase flow in deforming porous media. Computer Methods and advances in Geomechanics, eds. Beer, G., Booker, J.R. and Carter, J.P., Balkema, Rotterdam, 1215–1220.Google Scholar
  22. Schrefler, B.A., Simoni, L., Turska, E, and, Zhan X.Y., 1993: Zur berechnung von ungesättigten konsolidationsproblemen, Bauingenieur, 68, 375–384.Google Scholar
  23. Schrefler, B.A., Zhan X.Y. and Simoni, L.: A fully coupled model for water flow, airflow and heat flow in deformable porous media. to appear in Int. J. of Numerical Meths. for Heat & Fluid Flow.Google Scholar
  24. Simo, J.C., 1988: A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition. Part II: Computational aspects. Comp. Meths. Appl. Mech. Eng. 68, 1–31.Google Scholar
  25. Simoni, L. and Schrefler, B.A., 1990: Strategie di soluzione nella meccanica dei mezzi porosi parzialmente saturi. Proc. X Congresso AIMETA, ETS Editrice, Pisa, 825–830.Google Scholar
  26. Simoni, L. and Schrefler, B.A., 1991: A staggered finite element solution for water and gas flow in deforming porous media, Communications Applied Numerical Methods, 7, 213–223.CrossRefMATHGoogle Scholar
  27. Turska, E. and Schrefler, B.A. 1993. On convergence conditions of partitioned solution procedures for consolidation problems, Comp. Meth. Appl. Mech. Eng., 106, 51–63.CrossRefMATHMathSciNetGoogle Scholar
  28. Wisniewski, K., Turska, E., Simoni, L. and Schrefler, B.A., 1991: Error analysis of a staggered predictor-corrector scheme for consolidation in porous media, in The Finite Element Method in the 1990’s, Festschrift O.C. Zienkiewicz, (eds. Onate, Periaux, Samuelson ), Springer Verlag, 192–201.CrossRefGoogle Scholar
  29. Wood, W.L., 1984: A unified set of single step algorithms, part 2: Theory, Int. J. Num. Meth. in Eng., 20, 2303–2309.Google Scholar
  30. Wood, W.L., 1990: Practical time stepping schemes, Clarendon Press, Oxford.MATHGoogle Scholar
  31. Zienkiewicz, O.C. and Taylor, R.L., 1989: The finite element method, Vol. 1, McGraw-Hill, London.Google Scholar
  32. Zienkiewicz, O.C. and Taylor, R.L., 1991: The finite element method, Vol. 2, McGraw-Hill, London.Google Scholar
  33. Zienkiewicz, O.C., Schrefler, B.A., Simoni, L. and Xie, Y.M., 1991: Two and three phase behaviour in soil dynamics, in Nonlinear computational mechanics. A state of the art. eds. Wriggers, P. and Wagner, W., Springer Verlag, Berlin, 103–136.Google Scholar
  34. Zienkiewicz, O.C. and Onate E., 1991: Finite volumes versus finite elements. Is there really a choice?, in Nonlinear computational mechanics. A state of the art. eds. Wriggers, P. and Wagner W., Springer Verlag, Berlin, 240–254Google Scholar

Copyright information

© Springer-Verlag Wien 1995

Authors and Affiliations

  • B. A. Schrefler
    • 1
  • L. Simoni
    • 1
  1. 1.University of PaduaPaduaItaly

Personalised recommendations