Fuzzy Specification of Uncertain Knowledge and Vague or Imprecise Information

  • H. Bandemer
Conference paper
Part of the International Centre for Mechanical Sciences book series (CISM, volume 363)


Impreciseness and vagueness are facets of uncertainty and mean that an object or some of its features can not be recorded or described precisely. Hence both must be considered in contrast with randomness, which describes variability, being another kind of uncertainty. Whereas probability theory and mathematical statistics deal with the behaviour of (perhaps hypothetical) populations, impreciseness and vagueness are concerned with each single piece of information, called a datum. For handling such data they must be described as mathematical items. The “classical” model for impreciseness is given by set-value-description, e.g. by intervals in the simplest case. However, as is known, the main problem in application of interval mathematics is fixing precise ends of the intervals. Moreover, data can be given by verbal descriptions. Then they are called vague data, usually coded by numbers or letters. However, in such a form they lose much of their semantic meaning, which would be very important for processing them and for interpreting the conclusions drawn from this processing. In the paper some examples are provided how such imprecise or vague data had been specified by fuzzy sets in real-world applications, e.g. measuring from blurred pictures in the micro area and comparing imprecise sample-spectrograms with standard spectrograms. Methods included are, e.g., using grey-tone levels in pictures on the screen and using structure elements from mathematical morphology for specifying fuzzy functions. Finally a numerical example is considered to show how impreciseness influences the results of simple statistical procedures.


Membership Function Fuzzy Number Mathematical Morphology Fuzzy Data Fuzzy Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bandemer, H. (Ed.): Modelling Uncertain Data. Akademie Verlag, Berlin 1993Google Scholar
  2. 2.
    Bandemer, H.; Bellmann, A.: Unscharfe Methoden der Mehrphasenregression. In: Peschel, G. (Ed.): Beiträge zur Mathematischen Geologie und Geoinformatik, Sven von Loga, Köln, 1991, 25–27.Google Scholar
  3. 3.
    Bandemer, H.: Fuzzy data: the “Likeness” of individuals. Genealogical Computing 10 (1990), 47.Google Scholar
  4. 4.
    Bandemer, H.; Gottwald, S.: Introduction to Fuzzy Methods. Wiley, Chichester, 1995Google Scholar
  5. 5.
    Bandemer, H.; Kraut, A.: On a fuzzy-theory-based computer-aided particle shape description. Fuzzy Sets and Systems 27 (1988), 105–113MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bandemer, H.; Kraut, A.: A case study on modelling impreciseness and vagueness of observations to evaluate a functional relationship. In: Janko, M.; Roubens, M.; Zimmermann, H.-J., (Eds.): Progress in Fuzzy Sets and Systems, Kluwer Academic Publ., Dordrecht, 1990, 7–21CrossRefGoogle Scholar
  7. 7.
    Bandemer, H.; Kraut, A.: On fuzzy shape factors for fuzzy shapes. In: Bandemer, H. (Ed.): Some Applications of Fuzzy Set Theory in Data Analysis II, Freiberger Forschungshefte D 197, Grundstoffverlag Leipzig, 1989, 9–26Google Scholar
  8. 8.
    Bandemer, H.; Kraut, A.; Vogt, F.: Evaluation of hardness curves at thin surface layers–A case study on fuzzy observations–In: Bandemer, H. (Ed.): Some Applications of Fuzzy Set Theory in Data Analysis; Freiberger Forschungshefte D 187, Grundstoffverlag, Leipzig 1988, 9–26Google Scholar
  9. 9.
    Bandemer, H.; Näther, W.: Fuzzy Data Analysis. Kluwer Academic Publishers, Dordrecht, Boston, London 1992.Google Scholar
  10. 10.
    Bandemer, H.; Roth, K.: A method of fuzzy-theory-based computer-aided data analysis. Biom. J. 29 (1987), 497–504MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Bocklisch, St. F.: Prozeanalyse mit unscharfen Verfahren. Verlag Technik, Berlin 1987Google Scholar
  12. 12.
    DiGesù, V.; Maccarone, M. C.; Tripiciano, M.: MMFUZZY: Mathematical morphology based on fuzzy operators. In: Lowen, R.; Roubens, M. (Eds.) Proc. IFSA 91, Brussels, Engineering, 1991, 29–32.Google Scholar
  13. 13.
    Goodman, I. R.; Nguyen, H. T.: Uncertainty Models for Knowledge-Based Systems. North-Holland Publ. Comp., Amsterdam 1985Google Scholar
  14. 14.
    Kruse, R.; Meyer, K.D.: Statistics with Vague Data. Reidel Publishing Company, Dordrecht 1987.CrossRefMATHGoogle Scholar
  15. 15.
    Kruse, R.; Gebhardt, J.; Klawonn, F.: Fuzzy-Systeme. B.G. Teubner Verlag, Stuttgart 1993Google Scholar
  16. 16.
    Malinvaud, E.: Statistical Methods Of Econometrics. North-Holland, Amsterdam 1966MATHGoogle Scholar
  17. 17.
    Nagel, M.; Feiler, D.; Bandemer, H.: Mathematische Statistik in der Umwelttechnik. In: Bandemer, H. (Ed.): Mathematik in der Technik, Bergakademie Freiberg 1985, Heft 1, 61–66Google Scholar
  18. 18.
    Otto, M.; Bandemer, H.: Pattern recognition based on fuzzy observations for spectroscopic quality control and chromographic fingerprinting. Ana. Chim. Acta 184 (1986), 21–31CrossRefGoogle Scholar
  19. 19.
    Otto, M.; Bandemer, H.: A fuzzy approach to predicting chemical data from incomplete, uncertain and verbal compound features. In: Jochum, C.; Hicks, M.G.; Sunkel J. (Eds.): Physical Property Prediction in Organic Chemistry, Springer Verlag, Berlin, Heidelberg 1988, 171–189CrossRefGoogle Scholar
  20. 20.
    Serra, J.: Image Analysis and Mathematical Morphology; Vol. 2, Academic Press, Princeton, 1988.Google Scholar
  21. 21.
    Viertl, R.: Statistical inference for fuzzy data in environmetrics. Environmetrics 1 (1990), 37–42CrossRefGoogle Scholar
  22. 22.
    Viertl, R.: Einführung in die Stochastik. Springer Verlag Wien, New York 1990CrossRefMATHGoogle Scholar
  23. 23.
    Viertl, R.: On statistical inference based on non-precise data. In: Bandemer. H. (Ed.): Modelling Uncertain Data, Akademie Verlag, Berlin 1993, 121–130Google Scholar
  24. 24.
    Wang, Z.; Klir, J.: Fuzzy Measure Theory, Plenum Press, New York 1992.CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 1995

Authors and Affiliations

  • H. Bandemer
    • 1
  1. 1.TU Bergakademie FreibergFreibergGermany

Personalised recommendations