Passive Ventilation of Shocks in Steady and Unsteady Internal Flows

  • G. H. Schnerr
Part of the International Centre for Mechanical Sciences book series (CISM, volume 369)


Unsteady aerodynamics plays an important role in turbomachinery aeroelastic and aeroacoustic applications. Unsteady fluctuations in the flow arising from blade vibrations or aerodynamic disturbances at the in- or outflow boundaries may cause structural failure of the blading and, possibly, extensive damage of the engine. In the transonic flow regime waves propagate in the flow field and displace shock waves, therefore the time dependent shock movement and the unsteady lift and moment have become an important concern.

In steady external transonic flow the passive control of the shock-boundary layer interaction has been extensively investigated to weaken the shock strength and to reduce losses and separation phenomena, e.g. in flows over airplane wing sections. Application to steady internal flows is more difficult. Therefore, in a first step we apply the method of passive control to steady supersonic compressor flow. Alternatively we show the effectiveness of ventilation by very thin slits instead of a cavity covered by a porous blade.

Finally we apply the method of ventilation to unsteady internal transonic flow. Experiments and numerical results of the Euler equations for inviscid flow modelling agree in tendency and show a reduction of the amplitude of the shock oscillation up to 50%.


Cavity Length Chord Length Suction Side Passive Control Normal Shock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Schreiber, H.A. and Yu, S.: Experiments on strong shock wave-turbulent boundary layer interaction in a supersonic compressor cascade, Bericht: DLR-IB-325-02/89, 1989.Google Scholar
  2. [2]
    Breitling, T.: Berechnung transsonischer reibungsbehafteter Kanal— und Profilströmungen mit passiver Beeinflussung, Dissertation, Fakultät für Maschinenbau, Universität Karlsruhe (TH ) 1989.Google Scholar
  3. [3]
    Bohning, R. and Zierep, J.: Der senkrechte Verdichtungsstoß an einer gekrümmten Wand unter Einfluß der Reibung, ZAMP, 27 (1976), 225 - 240.CrossRefMATHGoogle Scholar
  4. [4]
    Baldwin, B.S. and Lomax, H.: Thin layer approximation and algebraic model for separated turbulent flow, AIAA—paper 78-257, AIAA 16th Aerospace Sciences Meeting, Huntsville, Alabama, 1978.Google Scholar
  5. [5]
    Stock, H.W. and Haase, W.: The determination of turbulent length scales in algebraic turbulence models for attached and slightly separated flows using Navier Stokes methods, AIAA—paper 87-1302.Google Scholar
  6. [6]
    Braun, W.: Experimentelle Untersuchungen der turbulenten Stoß—Grenzschicht—Wechselwirkung mit passiver Beeinflussung, Dissertation, Fakultät für Maschinenbau, Universität Karlsruhe (TH ) 1990.Google Scholar
  7. [7]
    Anderson, Thomas, and van Leer, B.: Comparison of finite volume flux vector splittings for the Euler equations, AIAA Journal, 24 (1986), 1453 - 1460.CrossRefGoogle Scholar
  8. [8]
    Baker, T.J., Jameson, A. and Schmidt, W.: A family of fast and robust Euler codes, MAE Report 1652, 1984.Google Scholar
  9. [9]
    Schnerr, G.H., Dohrmann, U., Sadi, O. and Zierep, J.: Numerical and experimental investigation of passive control of the shock—boundary layer interaction in a transonic compressor cascade, in: Proc. ICFM II — 2nd International Conference on Fluid Mechanics, Beijing, China, July 7-10, 1993 (Eds.: Zhao Dagang, Zhang Zhixin) Peking University Press, Beijing 1993, 504 - 510.Google Scholar
  10. [10]
    Schnerr, G.H., Dohrmann, U and Zierep, J.: Passive control of the shock—boundary layer interaction in a transonic compressor cascade, in: Proc. 2nd ISAIF — 2nd International Symposium on Experimental and Computational Aerothermodynamics of Internal Flow, Prague, July 12-15,1993 (Eds.: R. Dvofak, J. Kvapilovâ) Society of Czech Mathematicians and Physicists, 1993, 491 - 498.Google Scholar
  11. [11]
    Yu, S., Schnerr, G.H., Dohrmann, U and Sadi, O.: Passive control of shock—boundary layer interaction in transonic axial compressor cascade flow, in: Fluff s— and Gasdynamics Acta Mechanica Supplementum 4, (Eds.: Schnerr, G.H., Bühler,., Bohning, R. and Frank, W.) Springer—Verlag, Wien, New York 1994, 207 - 217.Google Scholar
  12. [12]
    Sadi, O.:, Experimentelle Untersuchung zur passiven Beeinflussung der Stoß—Grenzschicht—Wechselwirkung in einem axialen transsonischen Verdichtergitter, Dissertation, Fakultät für Maschinenbau, Universität Karlsruhe (TH ) 1994.Google Scholar
  13. [13]
    Bölcs, A., Suter, P.: Transsonische Turbomaschinen, G. Braun—Verlag, Karlsruhe, Germany, 1986.Google Scholar
  14. [14]
    Schnerr, G.H. and Li, P.: Numerical simulation of unsteady inviscid transonic internal flows with passive control, to be published.Google Scholar

Copyright information

© Springer-Verlag Wien 1996

Authors and Affiliations

  • G. H. Schnerr
    • 1
  1. 1.University of Karlsruhe (TH)KarlsruheGermany

Personalised recommendations