Passive Control of Shock/Boundary Layer Interaction

  • R. Bohning
Part of the International Centre for Mechanical Sciences book series (CISM, volume 369)


Normal shock wave — turbulent boundary layer phenomena are presented and discussed. Examples of experimental results are set up to provide a convincing material about the interaction field structure and its behaviour under the influence of key parameters. Besides, various theoretical approaches are presented and explained, the historical as well as the modern ones. A comparison of the theoretical results with corresponding experiments illustrates the abilities of applied methods. Finally, the material presented here, describes some of the modifications being introduced to standard passive control in order to improve the effectiveness of ventilation.


Boundary Layer Mach Number Wall Shear Stress Passive Control Transonic Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of symbols


chord length


drag coefficient


viscous drag coefficient


wave drag coefficient


friction coefficient


lift coefficient


pressure coefficient


critical velocity of sound


Mach number


Pre-shock Mach number


critical Mach number profil of the upstream undisturbed boundary layer


static pressure


Prandtl number


Radius of wall curvature


Reynolds number

u , v

mean flow velocity components

x , y

Cartesian coordinates


thickness of the viscous sublayer


angle of attack


exponent of the velocity profil in the boundary layer


boundary layer thickness


displacement thickness


momentum thickness


ratio of constant specific heats


coefficient of thermal conduction




dynamic viscosity


kinematic viscosity




wall shear stress


Subscripts and Superscripts


undisturbed basic flow

n , t

normal, tangential


disturbance quantity




dimensional quantities



free stream conditions


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bahi, L., Ross, J.M. and Nagamatsu, H.T.: Passive shock wave/boundary layer control for transonic airfoil drag reduction. AIAA-Paper 83 - 0137 (1983)Google Scholar
  2. [2]
    Thiede, P., Krogmann, P. and Stanewsky, E.: Active and passive shock-boundary layer interaction control on supercritical airfoils. AGARD-CP-365, Brussels 1984Google Scholar
  3. [3]
    Krogmann, P., Stanewsky, E. and Thiede, P.: Transonic shock/boundary layer interaction control. ICAS-Paper 84-2.3.3, Toulouse 1984Google Scholar
  4. [4]
    Bohning, R. and Zierep, J.: Calculation of 2D Turbulent Shock/Boundary-Layer Interaction at Curved Surface with Suction and Blowing. In: Turbulent Shear Layer/Shock Wave Interactions, IUTAM Symposium Palaiseau 1985 (ed: J. Délery ), Springer-Verlag 1985, pp 105 - 112Google Scholar
  5. [5]
    Bohning, R. and Jungbluth, H.: Turbulent Shock/Boundary Layer Interaction with Control. In: Symposium Transsonicum Ill (ed: J. Zierep and H. Oertel jr.), Springer-Verlag Berlin 1989, pp. 389 - 398Google Scholar
  6. [6]
    Breitling, T.: Berechnung transsonischer, reibungsbehafteter Kanal-und Profilströmungen mit passiver Beeinflussung. Dissertation, Universität Karlsruhe 1989Google Scholar
  7. [7]
    Braun, W.: Experimentelle Untersuchung der turbulenten Stoß-Grenzschicht-Wechselwirkung mit passiver Beeinflussung. Dissertation, Universität Karlsruhe 1990Google Scholar
  8. [8]
    Délery, J., Chanetz, B. and Pot, T.: Fundamental Experiments on Passive Control Applied to Transonic Shock-Wave/Boundary-Layer Interaction. In: 3. STAB-Workshop, Nov. 10-11, 1987, DFVLR GöttingenGoogle Scholar
  9. [9]
    Raghunathan, S. and Mabey, D.G.: Passive shock wave/boundary-layer control on a wall-mounted model. AIAA-Journal 25 (1987), 275ffGoogle Scholar
  10. [10]
    Liu, X. and Squire, L.C.: An investigation of shock-boundary-layer interactions on curved surfaces at transonic speeds. J. Fluid Mech. 187 (1988), 467 - 468CrossRefGoogle Scholar
  11. [11]
    Dargel, G. and Thiede, P.: Viscous transonic airfoil flow simulation by an efficient viscous-inviscid interaction method. AIAA-Paper 87 - 0412 (1987)Google Scholar
  12. [12]
    Délery, J., Bur, R. and Pot, T.: Basic experiments on passive control of shockwave/boundary-layer interaction in transonic flow. In: 4. STAB-Workshop 1989, DLR GöttingenGoogle Scholar
  13. [13]
    Bohning, R. and Zierep, J.: Der senkrechte Verdichtungstoß an der gekrümmten Wand unter Berücksichtigung der Reibung. ZAMP 27 (1976), 225 - 240CrossRefMATHGoogle Scholar
  14. [14]
    Bohning, R. and Zierep, J.: Normal Shock-Turbulent Boundary Layer Interaction at a Curved Wall. AGARD CP No. 291, Computation of viscous-inviscid interactions (1980), pp 17-1-17-8Google Scholar
  15. [15]
    Bohning, R.: Die Wechselwirkung eines senkrechten Verdichtungsstoßes mit einer turbulenten Grenzschicht an einer gekrümmten Wand. Habilitationsschrift, Universität Karlsruhe 1982Google Scholar
  16. [16]
    Lighthill, M.J.: On Boundary Layers and Upstream Influence, II. Supersonic Flow Without Separation. Proc. Royal Soc., A 217 No. 1131 (1953), 478 - 507CrossRefGoogle Scholar
  17. [17]
    Ackeret, J., Feldmann, F. and Rott, N.: Untersuchungen an Verdichtungsstößen und Grenzschichten in schnell bewegten Gasen. Mitteilungen aus dem Institut für Aerodynamik, ETH Zürich, No. 10, 1946Google Scholar
  18. [18]
    Oswatitsch, K. and Zierep, J.: Das Problem des senkrechten Stoßes an einer gekrümmten Wand. ZAMM 40 (1960), 143-144 (Tagungsheft)Google Scholar
  19. [19]
    Beam, R.M. and Warming, R.F.: An implicit factored scheme forthe compressible Navier-Stokes equations. AIAA Journal 16 (1978), 393 - 402CrossRefMATHGoogle Scholar
  20. [20]
    Chen, C.L.: Computation of transonic flow over porous airfoils. Ph.D. Thesis, University of Colorado 1986Google Scholar
  21. [21]
    Carter, J.E.: A new boundary layer inviscid iteration technique for separated flow. AIAA Paper 79 - 1450 (1979)Google Scholar
  22. [22]
    Le Balleur, J.C.: Strong maching method for computing for transonic viscous flows including wakes and separations. Lifting airfoils. La Recherche Aerospatiale 1981-3 (1981), pp. 21 - 45Google Scholar
  23. [23]
    Bohning, R., Thiede, P. and Dargel, G.: Numerical simulation of viscous transonic airfoil flows with passive shock control. In: Acta Mechanica (1994) Suppl. 4, Fluid and Gasdynamics (ed: G. Schnerr, R. Bohning, K. Bühler, W. Frank), Springer-Verlag Wien, New York, pp. 219 - 231Google Scholar
  24. [24]
    Bohning, R. and Zierep, J.: Turbulent Shock-Boundary-Layer Interaction with Passive Control by Normal Suction and Normal Tangential Blowing. Proceedings of the 2nd International Conference on Fluid Mechanics (ICFM II). Beijing 1993, Peking University Press, China, pp. 253 - 258Google Scholar
  25. [25]
    Bohning, R. and Liang D.W.: Internal reportGoogle Scholar
  26. [26]
    Bohning, R. and Doerffer, P.: Investigation of Porous Plate Flow. Karlsruhe, internal report (1994), will be published.Google Scholar

Copyright information

© Springer-Verlag Wien 1996

Authors and Affiliations

  • R. Bohning
    • 1
  1. 1.University of Karlsruhe (TH)KarlsruheGermany

Personalised recommendations