Advertisement

Control of Turbulent Flows for Skin Friction Drag Reduction

  • E. Coustols
Part of the International Centre for Mechanical Sciences book series (CISM, volume 369)

Summary

The purpose of these lectures is to provide an uptodate overview of some of the most recent concepts for turbulent skin friction drag reduction. After reviewing what is known about the structure of a turbulent boundary layer, active and passive techniques offering nett drag benefits will be discussed. Emphasis will be put on the concepts which appear to have potential for possible transonic aircraft applications via manipulation of either the inner or the outer region of a turbulent boundary layer. That means that approaches, which are applicable only to hydrodynamic flows or require additives or equipment which are obviously out of question for aircraft will not be discussed.

Thus, the goal of these lectures should be to put forward recent experimental and numerical results concerning the following techniques: wall suction, injection, active and selective control of turbulent boundary layers, passive control of turbulent boundary layers using LEBUs and Riblets. Some turbulent separation flow control will be briefly evoked.

Keywords

Skin Friction Turbulent Boundary Layer Drag Reduction Vortex Generator Adverse Pressure Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Lachmann G.V.: Boundary layer and flow control. Pergamon Press, Oxford 1961.MATHGoogle Scholar
  2. [2]
    Robert J.P.: Drag reduction: an industrial challenge, in: Special Course on Skin Friction Drag Reduction (ed. J. Cousteix) AGARD Report 786, 1992, Paper 2.Google Scholar
  3. [3]
    Thomas A.S.W: Aircraft drag reduction technology - a summary, in: Aircraft Drag Prediction and Reduction (ed. A.S.W. Thomas) AGARD Report 723, 1985, Paper 1.Google Scholar
  4. [4]
    Arnal D.: Control of laminar-turbulent transition for skin friction drag reduction, in: Control of Flow Instabilities and unsteady flows, CISM Course, September 18–22, 1995.Google Scholar
  5. [5]
    Gad-el-Hak M. and Bandyopadhyay P.R.: Field versus laboratory turbulent boundary layers, AIAA Journal, Vol. 33, n°2 (1995), 361–363.Google Scholar
  6. [6]
    Kline S.J. and Robinson S.K.: Turbulent boundary layer structure: progress, status and challenges, in: Structure of Turbulence and Drag Reduction (ed. A. Gyr) IUTAM Symposium Zurich, Springer-Verlag, 1990, 3–22.CrossRefGoogle Scholar
  7. [7]
    Robinson S.K.: Coherent motions in the turbulent boundary layer, Ann. Rev. Fluid Mech., 23 (1991) 603–639.Google Scholar
  8. [8]
    Blackwelder R.F.: The eddy structures in bounded shear flows, in: Special Course on Skin Friction Drag Reduction (ed. J. Cousteix) AGARD Report 786, 1992, Paper 6.Google Scholar
  9. [9]
    Kim J.J.: Study of turbulence structure through numerical simulations: the perspective of drag and reduction, in: Special Course on Skin Friction Drag Reduction (ed. J. Cousteix) AGARD Report 786, 1992, Paper 7.Google Scholar
  10. [10]
    Spalart P.R.: Direct simulation of a boundary layer up to Re =1410, J. Fluid Mech., 187 (1988) 61–98.CrossRefMATHGoogle Scholar
  11. [11]
    Gad-el-Hak M. and Bandyopadhyay P.R.: Reynolds number effects in wall-bounded flows, J. Fluid Eng., Transactions of the ASME, Vol. 116 (1994) 2–3.CrossRefGoogle Scholar
  12. [12]
    Kline S.J. and Robinson S.K.: Quasi coherent structures in the turbulent boundary layer: Part I. Status report on community-wide summary of data, in: Near wall turbulence: 1988 Zaric Memorial Conference, Hemisphere, 1989.Google Scholar
  13. [13]
    Robinson S.K, Kline S.J. and Spalart P.R.: Quasi coherent structures in the turbulent boundary layer: Part II. Verification and new information from a numerically simulated flat plate layer, in: Near wall turbulence: 1988 Zaric Memorial Conference, Hemisphere, 1989.Google Scholar
  14. [14]
    Kline S.J., Reynolds W.C, Schraub F.A and Runstadler P.W.: The structure of turbulent boundary layer, J. Fluid Mech., Vol. 30 (1967) 741–773.CrossRefGoogle Scholar
  15. [15]
    Kim H.T, Kline S.J. and Reynolds W.C.: The production of turbulence near a smooth wall in a turbulent boundary layer, J. Fluid Mech., Vol. 50, Part 1 (1971) 133–160.CrossRefGoogle Scholar
  16. [16]
    Kim J., Moin P. and Moser R.: Turbulence statistics in fully-developed channel flows, J. Fluid Mech., Vol. 177 (1987) 133–166.CrossRefMATHGoogle Scholar
  17. [17]
    Hinze J.O.: Turbulence, Mc Graw Hill, New York 1975.Google Scholar
  18. [18]
    Bogard D.G and Tiederman W.G.: Characteristics of ejections in turbulent channel flow, J. Fluid Mech., Vol. 179 (1987) 1–19.CrossRefGoogle Scholar
  19. [19]
    Stanislas M. and Hoyez M.C.: Analysis of the structure of a turbulent boundary layer, with and without a LEBU using light sheet smoke visualizations and hot wire measurements, in: Structure of Turbulence and Drag Reduction (ed. A. Gyr) IUTAM Symposium Zurich, Springer-Verlag, 1990, 507–515.CrossRefGoogle Scholar
  20. [20]
    Hefner J.N and Bushnell D.M.: An overview of concepts for aircraft drag reduction, in: Special Course on Concepts for Drag Reduction (ed. A.D. Young) AGARD Report 654, 1977, Paper 1.Google Scholar
  21. [21]
    Bushnell D.M.: Viscous drag reduction in aeronautics - ICAS’94 Guggenheim lecture, in: Proceedings 19th Congress of the International Council of the Aeronautical Sciences, Anaheim, USA, September 1994.Google Scholar
  22. [22]
    Bushnell D.M.: Turbulent drag reduction for external flows, in: Aircraft Drag Prediction and Reduction (ed. A.S.W. Thomas) AGARD Report 723, 1985, Paper 5.Google Scholar
  23. [23]
    Bushnell D.M.: Aircraft drag reduction, in: Special Course on Skin Friction Drag Reduction (ed. J. Cousteix) AGARD Report 786, 1992, Paper 3.Google Scholar
  24. [24]
    Special issues on drag reduction applications of riblets and manipulators, in: Applied Scientific Research, Vol. 46, N3 (ed. A.M. Savill ), Kluwer Academic Publishers, 1989.Google Scholar
  25. [25]
    Turbulence control by passive means, in: Fluid Mechanics and its Applications (ed. E. Coustols ), Kluwer Academic Publishers, 1990.Google Scholar
  26. [26]
    Recent developments in turbulence management, in: Fluid Mechanics and its Applications (ed. K.-S. Choi ), Kluwer Academic Publishers, 1991.Google Scholar
  27. [27]
    Further developments in turbulence management, in: Fluid Mechanics and its Applications (ed. K. Krishna Prasad ), Kluwer Academic Publishers, 1992.Google Scholar
  28. [28]
    Viscous drag reduction in boundary layers, in.: Progress in Astronautics and Aeronautics, Vol. 123 (ed. by D.M. Bushnell and J.N. Hefner), AIAA Wahington D.0 1990.Google Scholar
  29. [29]
    Coustols E. and Savill A.M.: Turbulent skin friction drag reduction by active and passive means, in.: Special Course on Skin Friction Drag Reduction (ed. J. Cousteix) AGARD Report 786, 1992, Paper 8.Google Scholar
  30. [30]
    Blackwelder R.F.: Some ideas on the control of near wall eddies, AIAA 2nd Shear Flow Conference, Tempe US, (1989) AIAA Paper 89–1009.Google Scholar
  31. [31]
    Wilkinson S.P.: Interactive wall turbulence control, in: Viscous drag reduction in boundary layers, Progress in Astronautics and Aeronautics, Vol. 123 (ed. by D.M. Bushnell and J.N. Hefner ), AIAA Wahington D.C, 1990, 479–509.Google Scholar
  32. [32]
    Choi H., Moin P. and Kim J.: Active turbulence control for drag reduction in wall-bounded flows, J. Fluid Mech., Vol. 262 (1994) 75–110.CrossRefMATHGoogle Scholar
  33. [33]
    Gad-el-Hak M.: Flow control by suction, in: Structure of Turbulence and Drag Reduction (ed. A. Gyr) IUTAM Symposium Zurich Switzerland, Springer-Verlag, 1990, 357–360.CrossRefGoogle Scholar
  34. [34]
    Gad-el-Hak M. and Bushnell D.M.: Separation control: review, J. Fluid Eng., Transactions of the ASME, Vol. 113 (1991) 5–29.CrossRefGoogle Scholar
  35. [35]
    Arnal D.: Boundary layer transition: prediction, application to drag reduction, in: Special Course on Skin Friction Drag Reduction (ed. J. Cousteix) AGARD Report 786, 1992, Paper 5.Google Scholar
  36. [36]
    Cousteix J.: Turbulence management, in: Proceedings ECOMAS 94 2nd European Computational Fluid Dynamics Conference “Transition, Turbulence and Control of Flows”, Stuttgart Germany 1994.Google Scholar
  37. [37]
    Pailhas G., Cousteix J., Anselmet F. and Fulachier L.: Influence of suction through a slot on a turbulent boundary layer, in: Proceedings 8th Symp. on Turbulent Shear flows, Munich Germany, Paper 18–4, 1991.Google Scholar
  38. [38]
    Pailhas G., Merigaud E., Anselmet F., Cousteix J. and Fulachier L.: Contrôle de la turbulence par aspiration localisée, in: Proceedings Colloque de Mécanique des Fluides Expérimentales de Toulouse France, Paper P29, 1995.Google Scholar
  39. [39]
    Merigaud E.: Structure de la couche limite turbulente en présence d’aspiration pariétale localisée, Ph.D Thesis, Université d’Aix-Marseille II, 23 Janvier 1995.Google Scholar
  40. [40]
    Merigaud E., Pailhas G., Anselmet F., Cousteix J. and Fulachier L.: Couche limite turbulente en présence de fentes d’aspiration, XI Congrès Français de Mécanique, Lille France, 1993.Google Scholar
  41. [41]
    Sokolov M. and Antonia R.A.: Response of a turbulent boundary layer to intensive suction through a porous strip, in: Proceedings 9th Symp. on Turbulent Shear flows, Kyoto Japan, Paper 5–3, 1993.Google Scholar
  42. [42]
    Antonia R.A., Fulachier L., Krishnamoorthy L.V., Benabid T. and Anselmet F.: Influence of wall suction on the organized motion in a turbulent boundary layer, J. Fluid Mech., Vol. 190 (1988) 217–240.CrossRefGoogle Scholar
  43. [43]
    Anselmet F., Antonia R.A, Benabid T. and Fulachier L.: Effect of wall suction on the transport of scalar by coherent structures in a turbulent boundary layer, in: Structure of Turbulence and Drag Reduction (ed. A. Gyr) IUTAM Symposium Zurich Switzerland, Springer-Verlag, 1990, 349–356.CrossRefGoogle Scholar
  44. [44]
    Wilkinson S.P., Anders J.B., Lazos B.S and Bushnell D.M.: Turbulent drag reduction research at NASA Langley: progress and plans, Int. J of Heat and Fluid Vlow, Vol. 9 (1988) 266–277.CrossRefGoogle Scholar
  45. [45]
    Gad-el-Hak M. and Blackwelder R.F.: Selective suction for controlling bursting events in a boundary layer, AIAA Journal, Vol. 27, n°3 (1989) 308–314.Google Scholar
  46. [46]
    Myose R.Y. and Blackwelder R.F.: Control of streamwise vortices using selective suction, AIAA Journal, Vol. 33, n°6 (1995) 1076–1080.Google Scholar
  47. [47]
    Sumitani Y. and Kasagi N.: Direct Numerical Simulation of turbulent transport with uniform wall injection and suction, AIAA Journal, Vol. 33, n°7 (1995) 1220–1228.Google Scholar
  48. [48]
    Hefner J.N. and Bushnell D.M.: Surface drag reduction via surface mass injection, in: Viscous drag reduction in boundary layers, Progress in Astronautics and Aeronautics, Vol. 123 (ed. by D.M. Bushnell and J.N. Hefner ), AIAA Wahington D.C, 1990, 457–476.Google Scholar
  49. [49]
    Cummings R.M., Schiff L.B. and Duino J.D.: Experimental investigation of tangential slot blowing on a generic chined forebody, Journal of Aircraft, Vol. 32, n°4 (1995), 818–824.Google Scholar
  50. [50]
    Gad-el-Hak M.: Interactive control of turbulent boundary layers: a futuristic overview, AIAA 3rd Shear Flow Conference, Orlando USA, (1993) AIAA Paper 93–3268, to be published in AIAA Journal.Google Scholar
  51. [51]
    Moin P. and Bewley T.: Feedback control of turbulence, Appl. Mech. Rev., Vol. 47, n°6, part 2 (1994) S3 - S13.CrossRefGoogle Scholar
  52. [52]
    Ho C-M.: Interaction between fluid dynamics and new technology, Keynote talk, in: Proceedings of the 1st International Conference of Flow Interaction, 1994, 1–8.Google Scholar
  53. [53]
    Jacobson 5.A and Reynolds W.C.: Experiments for turbulent boundary layer control, in: Proceedings Twelfth U.S National Congress of Applied Mechanics, Seattle USA, 1994.Google Scholar
  54. [54]
    Tsao T., Liu C., Tai Y.0 and Ho C-M.: Micromachinery magnetic actuators for active fluid control, in: Proceedings of ASME Applications of Microfabrication to fluid mechanics, FED-VOL. 197, 1994, 31–38.Google Scholar
  55. [55]
    McGinley C.B.: Large-eddy substitution via vortex cancellation for wall turbulence control, in: NASA Langley Research Center, 1994.Google Scholar
  56. [56]
    Coller BD, Holmes P. and Lumley J.: Control of bursting in boundary layer models, Appl. Mech. Rev., Vol 47, n°6, part 2 (1994) 5139–5143.Google Scholar
  57. [57]
    Bewley T., Choi H., Teman R. and Moin P.: Optimal feedback control of turbulent channel flow, in: Center for Turbulence Research, Stanford USA, Annual Research Briefs 1993, 3–14.Google Scholar
  58. [58]
    Savill A.M.: Drag reduction by passive devices–a review of some recent developments, in: Structure of Turbulence and Drag Reduction (ed. A. Gyr) IUTAM Symposium Zurich Switzerland, Springer-Verlag, 1990, 429–466.CrossRefGoogle Scholar
  59. [59]
    Walsh M.J.: Riblets, in: Viscous drag reduction in boundary layers, Progress in Astronautics and Aeronautics, Vol. 123 (ed. by D.M. Bushnell and J.N. Hefner ), AIAA Wahington D.C, 1990, 203–261.Google Scholar
  60. [60]
    Walsh M.J.: Turbulent boundary layer drag reduction using riblets, (1982) AIAA Paper 82–0169.Google Scholar
  61. [61]
    Walsh M.J. and Lindemann A.M.: Optimisation and application of riblets for turbulent drag reduction, (1984) AIAA Paper 84–0347.Google Scholar
  62. [62]
    Walsh M.J., Sellers III W.L. and McGinley C.B.: Riblet drag reduction at flight conditions, (1988) AIAA Paper 88–2554.Google Scholar
  63. [63]
    Coustols E. and Cousteix J.: Turbulent boundary layer manipulation in zero pressure gradient flows, in: Proceedings 16th ICAS Congress, Jerusalem Israel, Vol. 2, Paper 88–3.7.3, 1988, 999–1013.Google Scholar
  64. [64]
    Lazos B.S. and Wilkinson S.P.: Turbulent viscous drag reduction with thin-element riblets, AIAA Journal, Vol. 26, n°4 (1988) 496–498.Google Scholar
  65. [65]
    Bruse M., Bechert D.W., van der Hoeven J.G. Th, Hage W. and Hoppe G.: Experiments with conventional and with novel adjustable drag-reducing surfaces, in: Near-wall turbulent flows (ed. R.M.C. So, C.G. Speziale and B.E. Launder ), Elsevier Science Publishers B.V., 1993, 719–738.Google Scholar
  66. [66]
    Bruse M., Bechert D.W., Hage W. and Hoppe G.: New results of experiments with “brother and sister” riblets and with a 100:1 hammerhead shark skin replica, in: Proceedings 8th European Drag Reduction Working Meeting, Lausanne Switzerland, 1993.Google Scholar
  67. [67]
    Pulvin Ph. Contribution à l’étude des parois rainurées (riblets) pour les écoulements internes avec gradient de pression positif. Ph.D Dissertation No 809 EPFL Lausanne, 1989.Google Scholar
  68. [68]
    Nieuwstadt F.T.M., Wolthers W., Leijdens H., Krishna Prasad K. and Scharwz-van Manen A.: The reduction of skin friction by riblets under the influence of an adverse pressure gradient, Experiments in Fluids, Vol. 15 (1993) 17–26.CrossRefGoogle Scholar
  69. [69]
    Coustols E.: Behaviour of internal manipulators: riblet models in subsonic and transonic flows, AIAA 2nd Shear Flow Conference, Tempe USA (1989) AIAA Paper 89–0963.Google Scholar
  70. [70]
    Coustols E. and Cousteix J.: Experimental investigation of turbulent boundary layers manipulated with internal devices: riblets, in: Structure of Turbulence and Drag Reduction (ed. A. Gyr) IUTAM Symposium Zurich Switzerland, Springer-Verlag, 1990, 577–584.CrossRefGoogle Scholar
  71. [71]
    Caram J.M. and Ahmed A.: Effect of riblets on turbulence in the wake of an airfoil, AIAA Journal, Vol. 29, n°11 (1991) 1769–1770.Google Scholar
  72. [72]
    Coustols E., Gleyzes C., Schmitt V. and Berrue P.: Etude expérimentale de la réduction du frottement turbulent au moyen de parois rainurées, L’Aéronautique et l’Astronautique, Vol. 129, n°2 (1988) 34–46.Google Scholar
  73. [73]
    Van der Hoeven J.G. Th and Bechert D.W.: Experiments with a 1:4.2 model of a commuter aircraft with riblets in a large wind tunnel, in: Recent developments in Turbulence Management (ed. K.-S. Choi ), Fluid Mechanics and its Applications, Kluwer Academic Publ., 1991, 3–24.CrossRefGoogle Scholar
  74. [74]
    McLean J. D., George-Falvy D.N. and Sullivan P.P.: Flight tests of turbulent skin friction reduction by riblets, in: Proceedings of the International Conference on Turbulent drag reduction by passive means, London U.K, Vol. 2, September 1987, 408–424.Google Scholar
  75. [75]
    Squire L.C. and Savill A.M.: Some experiences of riblets at transonic speeds, in: Proceedings of the International Conference on Turbulent drag reduction by passive means, London UK, Vol. 2, September 1987, 392–407.Google Scholar
  76. [76]
    Walsh M.J. and Anders Jr. J.B.: Riblet/LEBU research at NASA Langley, Applied Scientific Research, Vol. 46, n°3 (1989) 255–262.Google Scholar
  77. [77]
    Coustols E. and Schmitt V.: Synthesis of experimental riblet studies in transonic conditions, in: Turbulence control by passive means (ed. E. Coustols) Kluwer Academic Publishers (1990), 123–140.Google Scholar
  78. [78]
    Viswanath P.R. and Mukund R.: Turbulent drag reduction using riblets on a supercritical airfoil at transonic speeds, AIAA Journal, Vol. 33, n°5 (1995) 945–947.Google Scholar
  79. [79]
    Stockman N.O., Latapy M.O., Andrew T.L. and Rogers Jr. D.H.: Scale model test of an isolated turbofan nacelle with riblets, (1991) SAE Technical Paper 91–2128.Google Scholar
  80. [80]
    Bushnell D.M.: Supersonic aircraft drag reduction, in: Proceedings AIAA 21st Fluid Dynamics, Plasmadynamics and Lasers Conference, Seattle USA, June 1990.Google Scholar
  81. [81]
    Gaudet L.: Properties of riblets at supersonic speeds, Applied Scientific Research, Vol. 46, n°3 (1989) 245–254.Google Scholar
  82. [82]
    Coustols. E. and Cousteix J.: Performances of riblets in the supersonic regime, AIAA Journal, Vol. 32, n°2 (1994) 431–433.Google Scholar
  83. [83]
    Robinson S.K.: Effects of riblets on turbulence in a supersonic boundary layer, (1988) AIAA Paper 88–2526.Google Scholar
  84. [84]
    Bechert D.W. and Bartenwerfer M.: The viscous flow on surfaces with longitudinal ribs, J. Fluid Mech., Vol. 206 (1989) 105–129.CrossRefGoogle Scholar
  85. [85]
    Luchini P., Manzo F. and Pozzi A.:1991 Resistance of a grooved surface to parallel flow and cross-flow, J. Fluid Mech., Vol. 228 (1991) 87–109.MATHGoogle Scholar
  86. [86]
    Baron A. and Quadrio M.: Some preliminary results on the influence of riblets on the structure of a turbulent boundary layer, Int. J. of Heat and Fluid Flow, Vol. 14, n°3 (1993) 223–230.Google Scholar
  87. [87]
    Vukoslavcevic P., Wallace J.M. and Balint J.L.: Viscous drag reduction using streamwisealigned riblets, AIAA Journal, Vol. 30, n°4 (1991) 1119–1122.Google Scholar
  88. [88]
    Park S.-R. and Wallace J.M.: Flow alteration and drag reduction by riblets in a turbulent boundary layer, AIAA Journal, Vol. 32, n°1, (1994) 31–38.Google Scholar
  89. [89]
    Benhalilou M., Anselmet F. and Fulachier L.: Conditional Reynolds stress on a V-grooved surface, Phys. Fluids, Vol. 6, n°6, (1994) 2101–2117.Google Scholar
  90. [90]
    Benhalilou M., Anselmet F. and Fulachier L.: Near-wall characteristics of a turbulent boundary layer over riblets, Eur. J. Mech., B/Fluids, Vol. 13, n°2, (1994) 211–236.Google Scholar
  91. [91]
    Suzuki Y. and Kasagi N.: On the turbulent drag reduction mechanism above a riblet surface, AIAA 3rd Shear Flow Conference, Orlando USA, (1993) AIAA Paper 93–3257.Google Scholar
  92. [92]
    Coustols E.: Riblets: main knowm and unknown features, in: Emerging Techniques in Drag Reduction (ed. K.-S. Choi) Kluwer Academic Publishers (1995) to be published.Google Scholar
  93. [93]
    Djenidi L. and Antonia R.A.: Riblet flow calculation with a low Reynolds number k-e model, Applied Scientific Research, Vol. 50 (1993) 267–282.Google Scholar
  94. [94]
    Launder B.E. and Li S.-P. 1992 The prediction of riblet behaviour with a low-Reynolds number k-e model, Aeronautical Journal, November (1992) 351–355.Google Scholar
  95. [95]
    Choi H., Moin P. and Kim J.: Direct numerical simulation of turbulent flow over riblets, J. Fluid Mech., Vol. 255 (1993) 503–539.CrossRefMATHMathSciNetGoogle Scholar
  96. [96]
    Anders Jr. J.B.: Outer-layer manipulators for turbulent drag reduction, in: Viscous drag reduction in boundary layers, Progress in Astronautics and Aeronautics, Vol. 123 (ed. by D.M. Bushnell and J.N. Hefner ), AIAA Wahington D.C, 1990, 263–284.Google Scholar
  97. [97]
    Anders J.B.: Large Eddy Break-Up devices as low Reynolds number airfois, SAE Aerospace Technology Conference and Exposition, Long Beach USA, SAE Technical Paper 86–1769, 1986.Google Scholar
  98. [98]
    Anders J.B. and Watson R.D.: Airfoil Large Eddy Break-Up devices for turbulent drag reduction, AIAA Shear Flow Conference, Boulder USA, (1985) AIAA Paper 85–0520.Google Scholar
  99. [99]
    Coustols E. and Cousteix J.: Experimental manipulation of turbulent boundary layers in zero pressure gradient flows through external and internal devices, in: Proceedings 7th Symp. on Turbulent Shear flows, Stanford USA, Paper 25–3, 1989.Google Scholar
  100. [100]
    Sahlin A., Johannson A.V. and Alfredsson P.H.: The possibility of drag reduction by outer layer manipulators in turbulent boundary layers, Physics of Fluids, Vol. 31, n°10 (1988) 2814–2820.Google Scholar
  101. [101]
    Anders J.B.: LEBU drag reduction in high Reynolds number boundary layers, AIAA 2nd Shear Flow Conference, Tempe USA, (1989) AIAA Paper 89–1011.Google Scholar
  102. [102] Lemay J., Savill A.M., Bonnet J.-P. and Delville J.: Some similarities between turbulent boundary layers manipulated by thin and thick flat plate manipulators, in: Turbulent Shear Flows 6 (eds. J.-Cl. Andre, J. Cousteix, F. Durst, B.E. Launder, F.W. Schmidt and J.H. Whitelaw)
    th Symp. on Turb. Shear Flows, Toulouse France, Springer-Verlag, 1989, 179–193.Google Scholar
  103. [103]
    Coustols E., Cousteix J. and Belanger J.: Drag reduction performance on riblet surfaces and through outer layer manipulators, in: Proceedings of the International Conference on Turbulent drag reduction by passive means, London U.K, Vol. 2, September 1987, 250–289.Google Scholar
  104. [104]
    Anders J.B.: Boundary layer manipulators at high Reynolds numbers, in: Structure of Turbulence and Drag Reduction (ed. A. Gyr) IUTAM Symposium, Zurich Switzerland, Springer-Verlag, 1990, 475–482.CrossRefGoogle Scholar
  105. [105]
    Bonnet J.P., Delville J. and Lemay J.: Experimental study of the behaviour of NACA 0009 profile in a transonic LEBU configuration, in: Proceedings 16th ICAS Congress, Jerusalem Israel, Vol. 2, Paper 88–3.7.2, 1988, 987–998.Google Scholar
  106. [106]
    Bonnet J.P., Poirier D. and Delville J.: Experimental study of the performance of a NACA 0009 turbulence manipulator in a transonic flow, in: Drag Reduction in fluid flows (eds. R.H.J. Sellin and R.T. Moses) Ellis Horwood Publishers, 1989, 115–122.Google Scholar
  107. [107]
    Beeler G.B.: Turbulent boundary layer wall pressure fluctuations downstream of a tandem LEBU, AIAA Journal, Vol. 24, n°4, (1986) 689–691.Google Scholar
  108. [108]
    Olivero Ph.: Etude expérimentale des fluctuations de pression pariétale sous une couche limite turbulente en aval d’un dispositif de deux manipulateurs externes de type profil aviation placés en tandem, Ph.D Thesis, Université d’Aix-Marseille II, Décembre 1990.Google Scholar
  109. [109]
    Trigui N. and Guezennec Y.G.: Heat transfer reduction in manipulated turbulent boundary layers, Int. J. Heat and Fluid Flow, Vol. 11, n°3, (1990) 214–219.Google Scholar
  110. [110]
    Suzuki K., Suzuki H., Inaoka K. and Kigawa H.: Heat transfer in a turbulent boundary layer with an insertion of a LEBU plate, in: Proceedings 8th Symp. on Turbulent Shear flows, Munich Germany, Paper 24–5, 1991.Google Scholar
  111. [111]
    Bonnet J.P., Alem D. and Hamdouni A.: Effect of external manipulators (LEBU) on the heat transfer on a flat plate turbulent boundary layer, in: Proceedings 6th European Drag Reduction Working Meeting, Eindhoven Netherlands, 1991.Google Scholar
  112. [112]
    Delville J., Bonnet J.P. and Lemay J.: Etude expérimentale de l’influence d’un manipulateur de turbulence de type lame mince sur la structure d’une couche limite plane incompressible, in: Proceedings 24ème Colloque d’Aérodynamique Appliquée, Poitiers France, Papier 18, 1987.Google Scholar
  113. [113]
    Guezennec Y.G. and Nagib H.M.: Mechanisms leading to net drag reduction in manipulated boundary layers, AIAA Journal, Vol. 28, n°2, (1990) 245–252.Google Scholar
  114. [114]
    Tenaud C., Coustols E. and Cousteix J.: Modelling of turbulent boundary layers manipulated with thin outer layer devices, in: Proceedings of the International Conference on Turbulent drag reduction by passive means, London U.K, Vol. 1, September 1987, 144–168.Google Scholar
  115. [115] Coustols E., Tenaud C. and Cousteix J.: Manipulation of turbulent boundary layers in zero-pressure gradient flows: detailed experiments and modelling, in: Turbulent Shear Flows 6 (eds. J.-Cl. Andre, J. Cousteix, F. Durst, B.E. Launder, F.W. Schmidt and J.H. Whitelaw)
    th Symp. on Turb. Shear Flows, Toulouse France, Springer-Verlag, 1989, 164–178.Google Scholar
  116. [116]
    Tenaud C.: Simulation numérique de l’écoulement autour d’un manipulateur externe de couche limite, Ph. D Thesis, Ecole Nationale Supérieure de l’Aéronautique et de l’Espace, Septembre 1988.Google Scholar
  117. [117]
    Tenaud C., Lemay J., Bonnet J.P. and Delville J.: Balance of turbulent kinetic energy downstream a single flat plate manipulator: comparisons between detailed experiments and modelling, in: Turbulence control by passive means (ed. E. Coustols) Kluwer Academic Publishers (1990), 1–21.Google Scholar
  118. [118]
    Lemay J., Delville J. and Bonnet J.P.: Turbulent kinetic energy balance in a LEBU modified turbulent boundary layer, Experiments in Fluids, Vol. 9 (1990) 301–308.CrossRefGoogle Scholar
  119. [119]
    Djenidi L., Ioualalen M., Savill A.M. and Squire L.C.: A computational study of aerofoil manipulators in laminar and turbulent flows, Eur. J. Mech., B/Fluids, Vol. 13, n°6, (1994) 661–683.Google Scholar
  120. [120]
    Friedrich R. and Klein H.: Large scale turbulence structures in a manipulated channel flow, in: Structure of Turbulence and Drag Reduction (ed. A. Gyr) IUTAM Symposium, Zurich Switzerland, Springer-Verlag, 1990, 483–493.CrossRefGoogle Scholar
  121. [121]
    Klein H. and Friedrich R.: Large Eddy Simulation of manipulated boundary layer and channel flows, in: Turbulence control by passive means (ed. E. Coustols) Kluwer Academic Publishers (1990), 41–65.Google Scholar
  122. [122]
    Nguyen V.D., Dickinson J., Jean Y., Chalifour Y’., Smaili A., Pagé A. and Paquet F.: Turbulent boundary layer over a ribleted surface with tandem manipulators using surface drag balances, in: Turbulence control by passive means (ed. E. Coustols) Kluwer Academic Publishers (1990), 159–172.Google Scholar
  123. [123]
    Roon J.B. and Blackwelder R.F.: The effects of longitudinal roughness elements and local suction upon the turbulent boundary layer, in: Structure of Turbulence and Drag Reduction (ed. A. Gyr) IUTAM Symposium, Zurich Switzerland, Springer-Verlag, 1990, 517–524.CrossRefGoogle Scholar
  124. [124]
    Pollard A., Delville J. and Bonnet J.P.: Drag reduction using a transversely oscillating LEBU, in: Proceedings 8th European Drag Reduction Meeting, EPFL Lausanne Switzerland, 1993.Google Scholar
  125. [125]
    Bushnell D.M.: Longitudinal vortex control–techniques and applications, The 32nd Lanchester Lecture, Aeronautical Quaterly, October 1992, 293–312.Google Scholar
  126. [126]
    Delery J.M.: Separation and vortex formation in turbulent flows, in: Proceedings 2nd Caribbean Conference on Fluid Dynamics, trinidad West Indies, January 1992, ONERA TP n° 1992–7.Google Scholar
  127. [127]
    Gad-el-Hak M. and Bushnell D.M.: Status and outlook of flow separation control, (1991), AIAA Paper 91–0037.Google Scholar
  128. [128]
    Calarese W., Crisler W.P. and Gustafson G.L.: Afterbody drag reduction by vortex generators, AIAA 23rd Aerospace Sciences meeting, Reno USA, (1985), AIAA Paper 85–0354.Google Scholar
  129. [129]
    Coustols E., Prudhomme S., Destarac D. and Mignosi A.: Rear fuselage flow studies on a modern transonic transport aircraft, in: Proceedings ICAS 19th Congress/AIAA Aircraft Systems Conference, Anaheim USA, September 1994 Paper 5.4.5, to appear in Journal of Aircraft, Vol. 32, n°6, 1995.Google Scholar
  130. [130]
    Coustols E., Seraudie A. and Mignosi A.: Rear fuselage flow characteristics for a complete wing-body configuration at transonic conditions, Abstract submitted to the 20th ICAS Meeting, Sorrento Italy, September 1996.Google Scholar
  131. [131]
    Saddoughi S.G.: Experimental investigations of “on-demand” vortex generators, in: Center for Turbulence Research, Stanford USA, Annual Research Briefs 1994, 197–203.Google Scholar

Copyright information

© Springer-Verlag Wien 1996

Authors and Affiliations

  • E. Coustols
    • 1
  1. 1.CERT-ONERAToulouseFrance

Personalised recommendations