Skip to main content

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 369))

  • 209 Accesses

Abstract

In these notes we describe some of the recent developments in the linear theory of hydrodynamic stability. We start by distinguishing between temporal and spatial stability, in the context of the very familiar model problem of the Kelvin-Helmholtz theory for a vortex sheet. The general prescription for determining the stability of causal solutions for initial-value problems is then described, which introduces the distinction between convective and absolute instabilities. These ideas have found very wide application, and we describe a number of different situations in which absolute instability in particular is seen to play an important role; this includes the response of an elastic fluid-loaded plate, the boundary-layer flow on a rotating disk, and the stability of a range of wake flows. All these situations apply very much to parallel flows, however, and in order to handle non-parallel flows one must find ways of connecting the local, quasi-parallel properties of the flow to the global dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Huerre, P. and Monkewitz, P.A. 1990 Local and global instabilities in spatially developing flows. Ann. Rev. Fluid Mech., 22, 473–537.

    Article  MathSciNet  Google Scholar 

  2. Goldstein, M.E. and Hultgren, L.S. 1989 Boundary-layer receptivity to long-wave free-stream disturbances. Ann. Rev. Fluid Mech., 21, 137–66.

    Article  MathSciNet  Google Scholar 

  3. Stewartson, K. and Stuart, J.T. 1971 A nonlinear instability theory for a wave system in plane Poiseuille flow. J. Fluid Mech., 48, 529–45.

    Article  MATH  MathSciNet  Google Scholar 

  4. Newell, A.C. and Whitehead, J.A. 1969 Finite bandwidth, finite amplitude convection. J. Fluid Mech., 38, 279–303.

    Article  MATH  Google Scholar 

  5. Hunt, R.E. 1995 Spatially varying flows with localised forcing. Ph.D. Thesis, University of Cambridge.

    Google Scholar 

  6. Briggs, R.J. 1964 Electron-Stream Interaction with Plasmas. MIT Press.

    Google Scholar 

  7. Bers, A. Space-time evolution of plasma instabilities — absolute and convective. In Handbook of Plasma Physics ed. M.N. Rosenbluth; 451–517. North-Holland.

    Google Scholar 

  8. Brazier-Smith, P.R. and Scott, J.F. 1984 Stability of fluid flow in the presence of a compliant surface. Wave Motion, 6, 547–560.

    Article  Google Scholar 

  9. Crighton, D.G. and Oswell, J.E. 1991 Fluid loading with mean flow. I. Response of an elastic plate to localised excitation. Phil. Trans. R. Soc. Lond., 335, 557–592.

    Article  MATH  MathSciNet  Google Scholar 

  10. Lighthill, M.J. 1978 Waves in Fluids. Cambridge University Press.

    Google Scholar 

  11. Gregory, N., Stuart, J.T. and Walker, W.S. 1955 On the stability of three-dimensional boundary layers with application to the flow down to a rotating disk. Phil. Trans. R. Soc. Lond., 248, 155–199.

    Article  MATH  MathSciNet  Google Scholar 

  12. Rosenhead, L. 1963Laminar Boundary Layers. Dover.

    Google Scholar 

  13. Lingwood, R.J. Absolute instability of the boundary layer on a rotating disk. J. Fluid Mech., to appear.

    Google Scholar 

  14. Crighton, D.G. 1972 Radiation properties of the semi-infinite vortex sheet. Proc. Roy. Soc Lond., 330, 185–98.

    Article  MATH  Google Scholar 

  15. Orszag, S.A. and Crow, S.C. 1970 Instability of a vortex sheet leaving a semi-infinite plate. Stud. Appl.Math., 49, 167–81.

    MATH  Google Scholar 

  16. Noble, B. 1958Methods Based on the Wiener-Hopf Technique. Chelsea.

    Google Scholar 

  17. Crighton, D.G. and Leppington F.G. Radiation properties of the semi-infinite vortex sheet: the initial-value problem. J. Fluid Mech., 64, 393–414.

    Google Scholar 

  18. Crighton, D.G. 1985 The Kutta condition in unsteady flow. Ann. Rev. Fluid Mech., 17, 411–45.

    Google Scholar 

  19. Monkewitz, P.A. 1988 The absolute and convective nature of instability in two dimensional wakes at low Reynolds numbers. Phys. Fluids, 31, 999–1006.

    Article  Google Scholar 

  20. Chomaz, J.M., Huerre, P. and Redekopp, L.G. 1987 Bifurcations to local and global modes in spatially developing flows. Phys. Review Letters, 60, 25–28.

    Article  Google Scholar 

  21. Drazin, P.G. and Reid, W.H. 1981 Hydrodynamic Stability. Cambridge University Press.

    Google Scholar 

  22. Mack, L.M. Boundary-layer linear stability theory. IN AGARD Report 709.

    Google Scholar 

  23. Monkewitz, P.A., Huerre, P. and Chomaz, J.-M. 1993 Global linear stability analysis of weakly non-parallel shear flows. J. Fluid Mech., 251, 1–20.

    Article  MATH  MathSciNet  Google Scholar 

  24. Huerre, P., Chomaz, J.M. and Redekopp, L.G. 1988 A frequency selection mechanism in spatially-developing flows. Bull. Am. Phys. Soc., 33, 2283.

    Google Scholar 

  25. Pierrehumbert, R.T. 1984 Local and global baroclinic instability of zonally varying flow. J. Atmos. Sci., 41, 2146–62.

    Google Scholar 

  26. Koch, W. 1985 Local instability characteristics and frequency determination of self-excited wake flows. J. Sound Vib., 99, 55–83.

    Google Scholar 

  27. Woodley, B.M. and Peake, N. Estimation of vortex shedding frequencies for cascades. In preparation.

    Google Scholar 

  28. Kachanov, Y.S. 1994 Experiments on boundary-layer transition. Ann. Review Fluid Medi., 26, 411–82.

    Article  MathSciNet  Google Scholar 

  29. Kerschen, E.J. 1989 Boundary layer receptivity. AIAA Paper 89–1109.

    Google Scholar 

  30. Gaster, M. 1965 On the generation of spatially growing waves in a boundary layer, J. Fluid Mech., 22, 433–441.

    Article  MATH  MathSciNet  Google Scholar 

  31. Goldstein, M.E. 1983 The evolution of Tollmien—Schlichting waves near a leading edge. J. Fluid Mech., 127, 59–81.

    Google Scholar 

  32. Ackberg, R.C. and Phillips, J.H. 1972 The unsteady boundary layer on a semi-infinite plate due to small fluctuations in the magnitude of the free-stream velocity. J. Fluid Mech., 51, 137–157.

    Article  MathSciNet  Google Scholar 

  33. Hammerton, P.W. and Kerschen, E.J. J. Fluid Mech., to appear.

    Google Scholar 

  34. Goldstein, M.E. 1985 Scattering of acoustic waves into Tollmien-Schlichting waves by small streamwise variations in surface geometry. J. Fluid Mech., 154, 509–30.

    Article  MATH  Google Scholar 

  35. Goldstein, M.E., Leib, S.J. and Cowley, S.J. 1987 Generation of Tollmien-Schlichting waves on interactive marginally separated flows. J. Fluid mech., 181, 485–517.

    Article  MATH  Google Scholar 

  36. Bodonyi, R.J. and Duck, P.W. 1992 Boundary-layer receptivity due to a wall suction and control of Tollmien-Schlichting waves. Phys. Fluids, 4, 1206–1214.

    Article  MATH  MathSciNet  Google Scholar 

  37. Stewartson, K. 1969 On the flow near the trailing edge of a flat plate, II. Mathematika, 16, 106–21.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Wien

About this chapter

Cite this chapter

Peake, N. (1996). Developments in Stability Theory. In: Meier, G.E.A., Schnerr, G.H. (eds) Control of Flow Instabilities and Unsteady Flows. International Centre for Mechanical Sciences, vol 369. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2688-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2688-2_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82807-6

  • Online ISBN: 978-3-7091-2688-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics