Computational Aspects in Chaotic and Stochastic Dynamics

  • F. Bontempi
Part of the International Centre for Mechanical Sciences book series (CISM, volume 340)


The computational aspects of the study of chaotic and stochastic motion can be framed in that is presently know as numerical dynamics. With these two words, one defines the modelling, the simulation and the understanding of an evolutionary physical system by means of the computer. It is to stress that, by means of the simulation of the physical system through a computer experiment, one hopes to achieve a better understanding of the unknown and forbidden structures of the system [1, 2, 3, 4, 5, 6]. In this way the study of a dynamical system through the computer is sometimes similar to the classical experimental work.


Phase Space Lyapunov Exponent Bifurcation Diagram Wiener Process Chaotic Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Abelson H., Disessa A., La geometria della tarta.ruga. Esplorare la matematica con il computer., (in Italian ), Franco Muzzio, 1986.Google Scholar
  2. [2]
    Gould H., Tobochnik J., An Introduction to Computer Simulation Methods., Addison-Wesley Publishing Company, Inc., Reading Massachusetts, USA, 1987.Google Scholar
  3. [3]
    Kocak H., Differential and Difference Equations through Computer Experiments., Springer-Verlag, 1989.Google Scholar
  4. [4]
    Kreutzer E., Numerische Untersuchung nichtlinearer dynamischer Systeme (in German)., Springer Verlag, (1987).Google Scholar
  5. [5]
    Morrison F., The art of modeling dynamic systems., John Wiley & Sons, 1991.Google Scholar
  6. [6]
    Whitney C.A., Random Processes in Physical Systems., John Wiley & Sons, 1990.Google Scholar
  7. [7]
    Casciati F., Faravelli L., Fragility Analysis of Complex Structural Systems., Research Studies Press, Tauton, 1990.Google Scholar
  8. [8]
    Bender C.M., Orszag S.A., Advanced Mathematical Methods for Scientist and Engineers., McGraw-Hill, 1978.Google Scholar
  9. [9]
    Peitgen H.O., Jurgens H., Saupe D., Chaos and Fractals. New Frontiers of Science. Springer-Verlag, 1992.Google Scholar
  10. [10]
    Baker G.L., Gollub J.P., Chaotic Dynamics. An Introduction., Cambridge University Press, 1990.MATHGoogle Scholar
  11. [11]
    Arnold V.I., Equazioni differenziali ordinarie., (in Italian), Editori Riuniti, 1979.Google Scholar
  12. [12]
    Arnold V.I., Metodi geometrici della teoria delle equazioni differenziali ordinarie., (in Italian), Editori Riuniti, 1989.Google Scholar
  13. [13]
    Birkhoff G., Rota G.C., Ordinary differential equations. John Wiley & Sons, 1959.Google Scholar
  14. [14]
    Pagani C.D., Salsa S., Analisi Matematica., (in Italian), Masson, 1991.Google Scholar
  15. [15]
    Schuster H.G., Deterministic Chaos. An introduction., VCH Weinheim, (1989).MATHGoogle Scholar
  16. [16]
    Seydel R., From Equilibrium to Chaos., Elsevier, (1988).Google Scholar
  17. [17]
    Bontempi F., Casciati F., Analisi stocastica di un oscillatore caotico., (in Italian), Atti dell’AIMETA 92, XI Congresso Nazionale dell’associazione Italiana di Meccanica Teorica ed Applicata, Trento 28 settembre - 2 ottobre 1992.Google Scholar
  18. [18]
    Bontempi F., Casciati F., Chaotic Motion and Stochastic Excitation., accepted for publication in Nonlinear Dynamics.Google Scholar
  19. [19]
    Bontempi F., Casciati F., Stochastic and Chaotic Dynamics., in Computational Stochastic Mechanics, Computational Pubblications Ashuerst Lodge, 1993.Google Scholar
  20. [20]
    Bontempi F., Transizione al caos in problemi di dinamica strutturale. (in Italian), Ph.D. Thesis, Polytechnic of Milan, Milan 1993.Google Scholar
  21. [21]
    Abraham R.H., Shaw C.D., Dynamics - The geometry of behaviour. Aerial Press, Inc. Santa Cruz, 1983.Google Scholar
  22. [22]
    Falconer K., Fractal Geometry., John Wiley & Sons, 1990.Google Scholar
  23. [23]
    Rasband S.N., Chaotic Dynamics of Nonlinear Systems., John Wiley & Sons, 1990.Google Scholar
  24. [24]
    Bolotin V.V., Statistical Methods in Structural Mechanics., Holden-Day Inc., San Francisco, 1969.MATHGoogle Scholar
  25. [25]
    Bontempi F., Casciati F., Faravelli L., Chaotic Motion versus Stochastic Excitation., Chaos, Solitons and Fractals, Vol. 1,•m. 6, pp. 491–500, 1991.Google Scholar
  26. [26]
    Bontempi F., Casciati F., Comport.amento caotico e stocastico di un oscillatore non lineare., (in Italian), Atti del Convegno Nazionale del Gruppo AIMETA di Meccanica dei Mat.eriali e delle Structure, Amalfi, 3–5 giugno 1991.Google Scholar
  27. [27]
    Abramowitz M., Stegun I.A., Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables., Dover, 1959Google Scholar
  28. [28]
    Belytschko T., Hughes T.J.R., Computational Methods for Transient Analysis., North-Holland, 1983.Google Scholar
  29. [29]
    Bathe K.J., Finite Element Procedures in Engineering Analysis., Prentice-Hall, 1982.Google Scholar
  30. [30]
    Argyris J., Mlejnek Ii.P., Dynamics of Structures., Text on Computational Mechanics Volume V, North-Holland, 1991.MATHGoogle Scholar
  31. [31]
    Griffiths D.V., Smith 1.M., Numerical Methods for Engineers., Blackwell Scientific Publications, 1991.Google Scholar
  32. [32]
    Hughes T.J.R., The Finite Element Method., Prentice-Hall, 1987.Google Scholar
  33. [33]
    Press W.H., Flannery B.P., Teukolsky S.A., Vetterling W.T., Numerical Recipes. The Art of Scientific Computating., Cambridge University Press, 1986.Google Scholar
  34. [34]
    St.oer J., Burlish R., Introduction to Numerical Analysis. Springer Verlag, 1980.Google Scholar
  35. [35]
    Augusti G., Baratta A., Casciati F., Probabilistic Methods in Structural Engineering., Chapman & Hall, 1984.Google Scholar
  36. [36]
    Gardiner C.W., Handbook of Stochastic Methods., Springer Series in Synergetics, Springer Verlag, 1983.Google Scholar
  37. [37]
    Wedig W., Vom Chaos zur Ordnung., GAMM–Mitteilungen, Heft 2, pp. 3–31, 1988.Google Scholar
  38. [38]
    Wedig W., Analysis and Simulation of Nonlinear Stochastic Systems., Proceedings of the IUTAM Symposium on Nonlinear Dynamics in Engineering Systems Stuttgart/Germany 1989.Google Scholar
  39. [39]
    Tabor M., Chaos and Integrability in Nonlinear Dynamics., John Wiley & Sons, (1989).Google Scholar
  40. [40]
    Jackson A., Perspectives in Nonlinear Dynamics. Vol. II., Cambridge University Press, (1991).Google Scholar
  41. [41]
    Wedig W., Lyapunov Exponents of Stochastic Systems and related Bifurcation Problem., Euromech 229, Nonlinear Applied Dynamics, Stuttgart October 5–9, 1987.Google Scholar
  42. [42]
    Wedig W., Lyapunov Exponents and Invariant Measures of Dynamics Systems., International Series of Mathematics, Vol. 97, 1991 Birkhauser Verlag Basel.Google Scholar
  43. [43]
    Lichtenberg A.J., Lieberman, M.A., Regular and Stochastic Motion., Springer Verlag, New York, 1983.CrossRefMATHGoogle Scholar
  44. [44]
    Wolf A., Swift J.B., Swinney H.L., Vastano J.A., Determining Lyapunov exponents from a time series., Physical Review A, Vol. 29, N. 3, March 1984.Google Scholar
  45. [45]
    Mayer-Kress G., (Ed.), Dimensions and Entropies in Chaotic Systems., Springer Verlag, Berlin, 1986.MATHGoogle Scholar
  46. [46]
    Hamilton I., Brumer P., Relaxation rates for two-dimensional deterministic mappings., Physical Review A, Vol. 25, N. 6, June 1982.Google Scholar
  47. [47]
    Termonia Y., Kolmogorov entropy from a time series., Physical Review A, Vol. 29, N. 3, March 1984.Google Scholar
  48. [48]
    Abraham N.B., Albano A.M., Passamante A., Rapp P.E., Measures of Complexity and Chaos., NATO ASI Series, Plenum Press, New York 1989.Google Scholar
  49. [49]
    Risken H., The Fokker-Planck Equation., Springer Series in Synergetics, Springer Verlag, 1984.Google Scholar
  50. [50]
    Fletcher C.A.J., Coinputational Techniques for Fluid Dynamics., Springer Series in Computational Physics, Springer Verlag, 1990.Google Scholar
  51. [51]
    Johnson C., Numerical solution of partial differential equations by the finite element method., Cambridge University Press, 1990.Google Scholar
  52. [52]
    Kunert A., Pfeiffer F., Description of Chaotic Motion by an Invariant Distribution at the Example of the Driven Duffing Oscillator., International Series of Numerical Mathematics, Vol. 97, (1991) Birkhauser Verlag Basel.Google Scholar
  53. [53]
    Kunert A., Naeherung fuer Invariante Distributionen chaotischer Systeme (in German)., ZAMM - Z.angew.Math.Mech. 71 (1991), T131 - T134.Google Scholar
  54. [54]
    Kunert A., Pfeiffer F., Description of Chaotic Motion by an Invariant Probability Density. Third Conference on Nonlinear Vibrations, Stability and Dynamics of Structures and Mechanism, Blacksburg VA June 25–27, 1990.Google Scholar
  55. [55]
    Langtangen H.P., A general numerical solution method for Fokker-Planck equations with applications to structural reliability., Probabilistic Engineering Mechanics, (1991), Vol. 6, No. 1, pp. 33–48.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1993

Authors and Affiliations

  • F. Bontempi
    • 1
  1. 1.Polytechnic of MilanMilanItaly

Personalised recommendations