Advertisement

Stochastic and Chaotic Motion in Engineering Systems

  • F. Casciati
Part of the International Centre for Mechanical Sciences book series (CISM, volume 340)

Abstract

This Chapter deals with the definition of a nonlinear dynamical system, the characterizations of its properties, the qualitative and quantitative tools for detecting them, the governing mathematical equations (independently of their solvability) and the consequent engineering pitfall. It is conceived as a bird’s eye introduction of Nonlinear Dynamics topics.

Keywords

Phase Space Lyapunov Exponent Engineer System Chaotic Motion Strange Attractor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Lichtenberg, A.J. and Lieberman, M.A.: Regular and Stochastic Motion, Springer Verlag, New York, 1983.CrossRefMATHGoogle Scholar
  2. [2]
    Tabor, M.: Chaos and Integrability in Nonlinear Dynamics, John Wiley and Sons, New York 1989.MATHGoogle Scholar
  3. [3]
    Wedig, W.: Vom Chaos zur Ordnung (in German), GAMM–Mitteilungen, Heft 2, (1988), 3–31.Google Scholar
  4. [4]
    Baker, G.L. and Gollub, J.P.: Chaotic Dynamics. An Introduction, Cambridge University Press, Cambridge 1990.MATHGoogle Scholar
  5. [5]
    Thompson, J.M.T. and Stewart, H.B.: Nonlinear Dynamics and Chaos, John Wiley and Sons, New York 1986.MATHGoogle Scholar
  6. [6]
    Moon, F.: Chaotic Vibration, John Wiley and Sons, New York 1987.Google Scholar
  7. [7]
    Casciati, F. and Faravelli, L.: Fragility Analysis of Complex Structural Systems, Research Studies Press, Taunton, (1990).Google Scholar
  8. [8]
    Bolotin, V.: Statistical Methods in Structural Mechanics, Holden-Day Inc., San Francisco, 1969.MATHGoogle Scholar
  9. [9]
    Gardiner, C.W.: Handbook of Stochastic Methods, Springer Series in Synergetics, Springer Verlag, New York 1983.Google Scholar
  10. [10]
    Bontempi, F., Casciati, F. and Faravelli, L.: Chaotic Motion versus Stochastic Excitation, Chaos, Solitons and Fractals, 1, 6, (1991), 491–500.CrossRefMATHGoogle Scholar
  11. [11]
    Szemplinska-Stupnicka W. and Troger H.: Engineering Applications of Dynamics of Chaos, Springer Verlag, CISM Series 319, Berlin 1992.Google Scholar
  12. [12]
    Bontempi F.: Transizione al caos in problemi di dinamica strutturale (in Italian), Ph.D. Thesis, Polytechnic of Milan, Milan 1993.Google Scholar
  13. [13]
    Reinhall P.G., Caughey T.K. and Storti D.W.: Order and Chaos in a Discrete Duffing Oscillator: Implication of Numerical Integration, Journal of Applied Mechanics, 162, 56 (1989), 162–167.CrossRefMathSciNetGoogle Scholar
  14. [14]
    Papoulis, A.: Probability, Random Variables and Stochastic Processes, McGraw-Hill, New York 1991.Google Scholar
  15. [15]
    Augusti, G., Baratta, A. and Casciati, F.: Probabilistic Methods in Structural Engineering, Chapman zhaohuan Hall, London 1984.CrossRefMATHGoogle Scholar
  16. [16]
    Gutzwiller M.C., Chaos in Classical and Quantum Mechanics, Springer Verlag, New York 1990.CrossRefMATHGoogle Scholar
  17. [17]
    Bontempi F. and Casciati F.: Chaotic Motion and Stochastic Excitation, Nonlinear Dynamics, (1993).Google Scholar
  18. [18]
    Meirovitch L.: Elements of Vibration Analysis, McGraw Hill, New York 1986.Google Scholar
  19. [19]
    Khasminskii R.Z.: Necessary and Sufficient Conditions for Asymptotic Stability of Linear Stochastic Systems, Theor. Prob. and Appls., 12 (1967), 144–147.CrossRefGoogle Scholar
  20. [20]
    Osdelec V.I.: A Multiplicative Ergodic Theorem, Lyapunov Characteristic Numbers for Dynamical Systems, Trans. Moscow Math. Soc., 19 (1968), 197–231.Google Scholar
  21. [21]
    Wolf, A., Swift, J.B., Swinney, H.L. and Vastano, J.A.: Determining Lyapunov Exponents from a Time Series, Physical Review A, 29, 3, (1984).Google Scholar
  22. [22]
    Tolman, R.C.: The principles of Statistical Mechanics., Oxford University Press, Oxford 1938.Google Scholar
  23. [23]
    Lin Y.K.: Probabilistic Theory of Structural Dynamics, R.E. Krieger, Huntington 1976.Google Scholar
  24. [24]
    Faravelli L.: Sicurezza strutturale (in Italian), Pitagora, Bologna 1988.Google Scholar

Copyright information

© Springer-Verlag Wien 1993

Authors and Affiliations

  • F. Casciati
    • 1
  1. 1.University of PaviaPaviaItaly

Personalised recommendations