Hyperbolic Structures in ODE’s and Their Discretization with an Appendix on Differentiability Properties of the Inversion Operator

  • B. M. Garay
Part of the International Centre for Mechanical Sciences book series (CISM, volume 371)


We survey some recent results of numerical dynamics centered about hyperbolic structures including structural stability, normally hyperbolic compact invariant manifolds, and topological horseshoes on transversal sections. The presentation itself is followed by a discussion on some of the underlying abstract mathematical theories. The paper ends with results on the inversion operator we have no references for. Proposition b.) stating that “operator φφ −1 as a self-homeomorphism of Diff1 (M) is nowhere differentiable” seems to be new.


Composition Operator Invariant Manifold Exponential Dichotomy Hyperbolic Structure Inverse Function Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abeth, O. (1994): Computation of topological degree using interval arithmetics, and applications. Math. Comput. 62, 171–178CrossRefGoogle Scholar
  2. 2.
    Abraham, R. (1963): Lectures of Smale on Differential Topology. Columbia University (mimeographed notes, unpublished)Google Scholar
  3. 3.
    Abraham, R., Marsden, J.E., Ratiu, T. (1983): Tensor Analysis and Applications. Springer, BerlinMATHGoogle Scholar
  4. 4.
    Appell, J., Zabreiko, P.P. (1990): Nonlinear Superposition Operators. Cambridge University Press, CambridgeCrossRefMATHGoogle Scholar
  5. 5.
    Aulbach, B., Garay, B.M. (1994): Discretization of semilinear differential equations with an exponential dichotomy. Computers Math. Appl. 28, 23–35CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Beyn, W.J. (1987a): On invariant curves for one-step methods. Numer. Math. 51, 103–122CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Beyn, W.J. (1987b): On the numerical approximation of phase portraits near stationary points. SIAM J. Numer. Anal. 24, 1095–1113CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Beyn, W.J., Lorenz, J. (1987): Center manifolds of dynamical systems under discretization. Numer. Funct. Anal. Optimiz. 9, 381–414.CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Butcher, J.C. (1987): The Numerical Analysis of Ordinary Differential Equations. Wiley, ChichesterMATHGoogle Scholar
  10. 10.
    Calvo, M.P., Sanz-Serna, J.M. (1994): Numerical Hamiltonian Problems. Applied Mathematics and Mathematical Computation 7, Chapman and HallGoogle Scholar
  11. 11.
    Chen, X.Y. (1995): Lorenz equations, Part III: existence of hyperbolic sets. (preprint)Google Scholar
  12. 12.
    Chow, S.N., Van Vleck, E. (1994): A shadowing lemma approach to global error analysis for initial value ODE’s. SIAM J. Sci. Comput. 15, 959–976CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Dieci, L., Lorenz, J., Russel, R.D. (1991): Numerical calculation of invariant tori. SIAM J. Sci. Stat. Comput. 12, 607–647.CrossRefMATHGoogle Scholar
  14. 14.
    Dudley, R.M. (1994): The order of the remainder in derivation of composition and inverse operators for p-variation norms. Ann. Stat. 22, 1–20CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Ebin, D.G., Marsden, J.E. (1970): Groups of diffeomorphs and the motion of an incompressible fluid. Ann. Math. 92, 102–163.CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Eirola, T. (1988): Invariant curves of one-step methods. BIT 28, 113–122CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Eirola, T. (1993): Aspects of backward error analysis in numerical ODE’s. J. Comput. Appl. Math. 45, 65–73CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Feckan, M. (1992): The relation between a flow and its discretization. Math. Slovaca 42, 123–127MATHMathSciNetGoogle Scholar
  19. 19.
    Foster, M.J. (1975): Calculus on vector bundles. J. London. Math. Soc. 11, 65–73CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Franks, J. (1979): Manifolds of Cr mappings and applications to differentiable dynamical systems. In: G.C. Rota ed., Studies in Analysis, Advances in Mathematics Supplementary Studies 4, pp. 271–290. Academic Press, New YorkGoogle Scholar
  21. 21.
    Garay, B.M. (1993): Discretization and some qualitative properties of ordinary differential equations about equilibria. Acta Math. Univ. Comenianae 62, 249–275MATHMathSciNetGoogle Scholar
  22. 22.
    Garay, B.M. (1994a) Discretization and normal hyperbolicity. Z. angew. Math. Mech. 74, T662 - T663MATHGoogle Scholar
  23. 23.
    Garay, B.M. (1994b): Discretization and Morse-Smale dynamical systems on planar discs. Acta Math. Univ. Comenianae 63, 25–38MATHMathSciNetGoogle Scholar
  24. 24.
    Garay, B.M. (1996a): Various closeness concepts in numerical ODE’s. Computers Math. Applic. 31, 113–119CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Garay, B.M. (1996b): On C3-closeness between the solution flow and its numerical approximation. J. Difference Eq. Appl. 2, 67–86CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Garay, B.M. (1996c): On structural stability of ordinary differential equations with respect to discretization. Numer Math. 72, 449–479CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Garay, B.M. (1996d): The discretized flow on domains of attraction: a structural stability result. IMA J. Numer. Anal. (submitted)Google Scholar
  28. 28.
    Garay, B.M. (1996e): Normally hyperbolic invariant manifolds and discretization. (in preparation)Google Scholar
  29. 29.
    Garay, B.M., Hofbauer, J. (1996): Chain recurrence and discretization. Bull. Austral. Math. Soc. (in print)Google Scholar
  30. 30.
    Hairer, E., Norsett, S.P., Wanner, G. (1993): Solving Ordinary Differential Equations I, Nonstiff Problems ( 2nd ed. ). Springer, Berlin Heidelberg New YorkGoogle Scholar
  31. 31.
    Hale, J.K. (1994): Numerical dynamics. Contemp. Math. 172, 1–30CrossRefMathSciNetGoogle Scholar
  32. 32.
    Hamilton, R.S. (1982): The inverse function theorem of Nash and Moser. Bull. Amer. Math. Soc. 7, 65–222CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Hassard, B., Zhang, J. (1994): Existence of a homoclinic orbit of the Lorenz system by precise shooting. SIAM. J. Math. Anal. 25, 179–196CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Hirsch, M.W. (1976): Differential Topology. Graduate Texts in Mathematics 33, Springer, Berlin Heidelberg New YorkGoogle Scholar
  35. 35.
    Hirsch, M.W., Pugh, C., Shub, M. (1977): Invariant Manifolds. Lecture Notes in Mathematics 583, Springer, Berlin Heidelberg New YorkGoogle Scholar
  36. 36.
    Irwin, M.C. (1980): Smooth Dynamical Systems. Academic Press, New YorkMATHGoogle Scholar
  37. 37.
    Kloeden, P.E., Lorenz, J. (1986): Stable attracting sets in dynamical systems and their one-step discretizations. SIAM J. Num. Anal. 23, 986–995CrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    Lorenz, J. (1994): Numerics of invariant manifolds and attractors. Contemp. Math. 172, 185–202CrossRefMathSciNetGoogle Scholar
  39. 39.
    Milnor, J. (1984): Remarks on infinite-dimensional Lie groups. In: B.S. DeWitt, R. Stora eds. Relativité, groupes et topologie II, pp. 1007–1057. North-Holland, AmsterdamGoogle Scholar
  40. 40.
    Mischaikow, K., Mrozek, M. (1995): Chaos in the Lorenz equations: a computer-assisted proof. Bull. Amer. Math. Soc. 32, 66–72CrossRefMATHMathSciNetGoogle Scholar
  41. 41.
    Mischaikow, K., Mrozek, M. (1996): Chaos in the Lorenz equations: a computer-assisted proof, Part II: details. (preprint)Google Scholar
  42. 42.
    Moore, G. (1995): Computation and parametrization of invariant curves and tori. SIAM J. Numer. Anal. (submitted)Google Scholar
  43. 43.
    Mrozek, M. (1990): Leray functor and cohomological Conley index for discrete time dynamical systems. Trans. Amer. Math. Soc. 318, 149–178CrossRefMATHMathSciNetGoogle Scholar
  44. 44.
    Mrozek, M. (1995): The Conley index and rigorous numerics. (this volume)Google Scholar
  45. 45.
    Moser, J. (1969): On a theorem of Anosov. J. Diff. Eq. 5, 411–440CrossRefMATHGoogle Scholar
  46. 46.
    Neumaier, A., Rage, T. (1993): Rigorous chaos verification in discrete dynamical systems. Physica D 67, 327–346CrossRefMATHMathSciNetGoogle Scholar
  47. 47.
    Palmer, K. Chow, S.N. (1992): On the computation of orbits of dynamical systems: the higher dimensional case. J. Complexity 8, 398–423CrossRefMATHMathSciNetGoogle Scholar
  48. 48.
    Phelps, R.R. (1989): Convex Functions, Monotone Operators and Differentiability. Springer, Berlin Heidelberg New YorkGoogle Scholar
  49. 49.
    Pollicott, M. (1993): Lectures on Ergodic Theory and Pesin Theory on Compact Manifolds. Cambridge University Press, CambridgeCrossRefMATHGoogle Scholar
  50. 50.
    Reinfelds, A. (1994): The reduction principle for discrete dynamical and semidynamical systems in metric spaces. J. Appl. Math. Phys. 45, 933–955CrossRefMATHMathSciNetGoogle Scholar
  51. 51.
    Robbin, J.W. (1971): A structural stability theorem. Ann. of Math. 94, 447–493CrossRefMATHMathSciNetGoogle Scholar
  52. 52.
    Robinson, C. (1974): Structural stability of vector fields. Ann. of Math. 99, 154–175CrossRefMATHMathSciNetGoogle Scholar
  53. 53.
    Sauer, T., Yorke, J.A. (1991): Rigorous verification of trajectories for the computer simulation of dynamical systems. Nonlinearity 4, 961–979CrossRefMATHMathSciNetGoogle Scholar
  54. 54.
    Shub, M. (1987): Global Stability of Dynamical Systems. Springer, Berlin Heidelberg New YorkCrossRefMATHGoogle Scholar
  55. 55.
    Srzednicki, R. (1995): On geometric detection of periodic solutions and chaos. (this volume)Google Scholar
  56. 56.
    Stuart, A.M. (1994): Numerical analysis of dynamical systems. In: A. Iserles ed., Acta Numerica, pp. 467–572. Cambridge University Press, CambridgeGoogle Scholar
  57. 57.
    Stuart, A.M., Humphries, A.R. (1996): Dynamical Systems and Numerical Analysis. Cambridge University Press, CambridgeMATHGoogle Scholar
  58. 58.
    Wiggins, S. (1988): Global Bifurcations and Chaos: Analytical Methods. Springer, Berlin Heidelberg New YorkCrossRefMATHGoogle Scholar
  59. 59.
    Zgliczynski, P. (1995): A computer-assisted proof of the horseshoe dynamics-in the Henon map. Random Comput. Dynamics (submitted)Google Scholar

Copyright information

© Springer-Verlag Wien 1996

Authors and Affiliations

  • B. M. Garay
    • 1
  1. 1.University of TechnologyBudapestHungary

Personalised recommendations