Boundary Value Problems for Quasilinear Second Order Differential Equations

  • R. Manásevich
  • K. Schmitt
Part of the International Centre for Mechanical Sciences book series (CISM, volume 371)


This paper constitutes a survey of recent results on eigenvalue problems for nonlinear boundary value problems which arise in the study of radial solutions of quasilinear elliptic partial differential equations. Typical examples of such problems are boundary value problems for perturbations of the p-Laplacian.


Eigenvalue Problem Nontrivial Solution Radial Solution Principal Eigenvalue Global Bifurcation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography References

  1. [1]
    R. Adams: Sobolev Spaces, Acad. Press, New York, 1975.MATHGoogle Scholar
  2. [2]
    W. Allegretto and Y. Huang: Eigenvalues of the indefinite-weight p-Laplacian in weighted spaces, preprint, 1995.Google Scholar
  3. [3]
    A. Anane: Simplicité et isolation de la première valeur propre du p-Laplacien, C. R. Acad. Sci Paris, 305 (1987), pp. 725–728.MATHMathSciNetGoogle Scholar
  4. [4]
    A. Anane: Thèse de doctorat, Université Libre de Bruxelles, 1988.Google Scholar
  5. [5]
    G. Barles: Remarks on uniqueness results of the first eigenvalue of the p-Laplacian, Ann. Fac. Sci. Toulouse Math., 9 (1988), pp. 65–75.CrossRefMATHMathSciNetGoogle Scholar
  6. [6]
    A. Ben-Naoum and C. De Coster: On the existence and multiplicity of positive solutions of the p-Laplacian separated boundary value problems, preprint, 1995.Google Scholar
  7. [7]
    P. Binding and Y. Huang: Two parameter problems for the p-Laplacian, preprint 1995.Google Scholar
  8. [8]
    H. Brézis: Operateurs Maximaux Monotones, North Holland, 1973.Google Scholar
  9. [9]
    F. Browder: Nonlinear monotone operators and convex sets in Banach spaces, Bull. Amer. Math. Soc., 71 (1965), pp. 780–785.CrossRefMATHMathSciNetGoogle Scholar
  10. [10]
    F. Browder: Fixed point theory and nonlinear problems, Bull. Amer. Math. Soc., 9 (1983), pp. 1–39.CrossRefMATHMathSciNetGoogle Scholar
  11. [11]
    S. Carl: Leray-Lions operators perturbed by state-dependent subdifferentials, preprint 1995.Google Scholar
  12. [12]
    C. Coffman: Lyusternik-Schnirelman theory and eigenvalue problems for monotone potential operators, J. Funct. Anal. 14 (1973), 237–252.CrossRefMATHMathSciNetGoogle Scholar
  13. [13]
    C. De Coster: Pairs of positive solutions for the one dimensional p-Laplacian, Nonl. Anal., TMA, 23 (1994), 669–681.CrossRefMATHGoogle Scholar
  14. [14]
    C. De Coster and P. Habets: Upper and lower solutions in the theory of ode boundary value problems: Classical and recent results, preprint, 1995.Google Scholar
  15. [15]
    F. De Thélin: Sur l’espace propre associé à la première valeur propre du pseudo-Laplacien, C. R. Acad. Sci. Paris, 303 (1986), pp. 355–358.MATHGoogle Scholar
  16. [16]
    H. Dang and K. Schmitt: Existence of positive solutions for semilinear elliptic equations in annular domains, Diff. Integral Equations, 7 (1994), 747–758.MATHMathSciNetGoogle Scholar
  17. [17]
    H. Dang, R. Manásevich and K. Schmitt: Positive radial solutions of some nonlinear partial differential equations, Math. Nachr., to appear.Google Scholar
  18. [18]
    H. Dang, K. Schmitt, and R. Shivaji: On the number of solutions of boundary value problems involving the p-Laplacian and similar nonlinear operators,Electr. J. Diff. Eq., to appear.Google Scholar
  19. [19]
    K. Deimling: Nonlinear Functional Analysis, Springer, Berlin, 1985.CrossRefMATHGoogle Scholar
  20. [20]
    M. Del Pino, M. Elgueta, and R. F. Manasevich: A homotopic deformation along p of a Leray-Schauder degree result and existence for (|u′|p−2u′)′ + (t, u) = 0, u(0) = u(T) = 0, p > 1, J. Diff. Equa., 80 (1989), pp. 1–13.Google Scholar
  21. [21]
    M. Del Pino and R. F. Manásevich: Global bifurcation from the eigenvalues of the p-Laplacian, J. Diff. Equa., 92 (1991), pp. 226–251.CrossRefMATHGoogle Scholar
  22. [22]
    P. Drabek: Solvability and Bifurcations of Nonlinear Equations, Longman Scientific Series, Essex, 1992.MATHGoogle Scholar
  23. [23]
    P. Drabek and Y. Huang: Perturbed p-Laplacian in ℝN: Bifurcation from the principal eigenvalue, preprint, 1995.Google Scholar
  24. [24]
    P. Drabek and Y. Huang: Multiple positive solutions of quasilinear elliptic equations inN, preprint, 1995.Google Scholar
  25. [25]
    P. Drabek and Y. Huang: Bifurcation problems for the p-Laplacian inN, preprint, 1995.Google Scholar
  26. [26]
    G. Duvaut and J. L. Lions: Les Inéquations en Mécanique et en Physique, Dunod, Paris, 1972.MATHGoogle Scholar
  27. [27]
    L. Erbe and K. Schmitt: On radial solutions of some semilinear elliptic equations, Diff. Integral Equations, 1 (1988), 71–78.MATHMathSciNetGoogle Scholar
  28. [28]
    A. Friedman: Variational Principles and Free Boundary Value Problems, WileyInterscience, New York, 1983.Google Scholar
  29. [29]
    N. Fukagai, M. Ito, and K. Narukawa: Bifurcation of radially symmetric solutions of degenerate quasilinear elliptic equations, Diff. Int. Eq. 8 (1995), 1709–1732.MATHMathSciNetGoogle Scholar
  30. [30]
    M. García-Huidobro, R. Manásevich and K. Schmitt: Positive radial solutions of nonlinear elliptic-like partial differential equations on a ball, preprint, 1995.Google Scholar
  31. [31]
    M. García-Huidobro, R. Manásevich and K. Schmitt: On the principal eigenvalue of p-Laplacian like operators, preprint, 1995.Google Scholar
  32. [32]
    M. García-Huidobro, R. Manásevich and K. Schmitt: Some bifurcation results for a class of p-Laplacian like operators, preprint, 1995.Google Scholar
  33. [33]
    M. García-Huidobro, R. Manásevich and P. Ubilla: Existence of positive solutions for some Dirichlet problems with an asymptotically homogeneous operator, Electronic J. Diff. Eq., 10 (1995), 1–22.Google Scholar
  34. [34]
    M. García-Huidobro, R. Manásevich and F. Zanolin: A Fredholm like result for strongly nonlinear ode’s, J. Diff. Equations, 114 (1993), 132–167.CrossRefGoogle Scholar
  35. [35]
    M. García-Huidobro and P. Ubilla: Multiplicity of solutions for a class of nonlinear 2nd order equations. Nonlinear Analysis, TMA, to appear.Google Scholar
  36. [36]
    D. Gilbarg and N. Trudinger: Elliptic Partial Differential Equations of Second Order, Sringer, Berlin, 1983.CrossRefMATHGoogle Scholar
  37. [37]
    Z. Guo: Existence and uniqueness of positive radial solutions for a class of quasilinear elliptic equations, Appl. Anal., 47 (1992), 173–189.CrossRefMATHMathSciNetGoogle Scholar
  38. [38]
    G. Gustafson and K. Schmitt: Nonzero solutions of boundary value problems for second order ordinary and delay differential equations, J. Diff. Equations, 12 (1972), 125–147.MathSciNetGoogle Scholar
  39. [39]
    J. Heinonen, T. Kilpeläinen and O. Martio: Nonlinear Potential Theory for Degenerate Elliptic Equations, Cambridge Univ. Press, Cambridge, 1993.Google Scholar
  40. [40]
    H. Kaper, M. Knaap, and M. Kwong: Existence theorems for second order boundary value problems, Diff. Integral Equations, 4 (1991), 543–554.MATHMathSciNetGoogle Scholar
  41. [41]
    D. Kinderlehrer and G. Stampacchia: An Introduction to Variational Inequalities, Academic Press, New York, 1980.MATHGoogle Scholar
  42. [42]
    M. Krasnosels’kii: Topological Methods in the Theory of Nonlinear Integral Equations, Pergamon Press, Oxford, 1963.Google Scholar
  43. [43]
    M. Krasnosels’kii: Positve Solutions of Operator Equations, Noordhoff, Groningen, 1964.Google Scholar
  44. [44]
    V. Le: Some global bifurcation results for variational inequalities, preprint, 1995.Google Scholar
  45. [45]
    V. Le and K. Schmitt: Minimization problems for noncoercive functionals subject to constraints, Trans. Amer. Math. Soc., 347 (1995), 4485–4513.CrossRefMATHMathSciNetGoogle Scholar
  46. [46]
    V. Le and K. Schmitt: Minimization problems for noncoercive functionals subject to constraints II, Advances Diff. Eq., to appear.Google Scholar
  47. [47]
    V. Le and K. Schmitt: On minimizing noncoercive functionals on weakly closed sets, Banach Center Publications, to appear.Google Scholar
  48. [48]
    V. Le and K. Schmitt: On Global Bifurcation for Variational Inequalities, manuscript, 1995.Google Scholar
  49. [49]
    J. Lions: Quelques Méthodes de Résolution des Problèmes aux Limites nov Linéaires, Dunod, Paris, 1969.Google Scholar
  50. [50]
    J. Lions and E. Magenes: Non Homogeneous Boundary Value Problems and Applications, Springer, Berlin, 1972.CrossRefGoogle Scholar
  51. [51]
    R. Manásevich and F. Zanolin: Time mappings and multiplicity of solutions for the one dimensional p-Laplacian, Nonlinear Analysis, TMA, 21 (1993), 269–291.MATHGoogle Scholar
  52. [52]
    S. Maier-Paape: Convergence for radially symmetric solutions of quasilinear elliptic equations is generic, preprint, 1995.Google Scholar
  53. [53]
    R. Manásevich, R. Njoku and F. Zanolin: Positive solutions for the one dimensional p-Laplacian, Diff. Integral Equations, 8 (1995), 213–222.MATHGoogle Scholar
  54. [54]
    K. Narukawa, T. Suzuki: Nonlinear eigenvalue problems for a modified capillary surface equation, Funk. Ekvacioy 37 (1994), 81–100.MATHMathSciNetGoogle Scholar
  55. [55]
    P. Omari and F. Zanolin: Infinitely many solutions of a quasilinear elliptic problem with an oscillatory potential, preprint, 1995.Google Scholar
  56. [56]
    M. Otani: Existence and nonexistence of nontrivial solutions of some nonlinear degenerate elliptic equations, J. Funct. Anal. 76 (1988), 140–159.CrossRefMATHMathSciNetGoogle Scholar
  57. [57]
    D. Pascali and J. Sburlan: Nonlinear Mappings of Monotone Type, Sijthoff and Noordhoff, Bucharest, 1978.MATHGoogle Scholar
  58. [58]
    P. Rabinowitz: Some global results for nonlinear eigenvalue problems, J. Funct. Anal. 7 (1971), 487–513.CrossRefMATHMathSciNetGoogle Scholar
  59. [59]
    P. Rabinowitz: Méthodes topologiques et problèmes aux limites nonlinéaires, Univ. Paris 6 Lab. Analyse Numérique 75010, 1975.Google Scholar
  60. [60]
    K. Schmitt: Boundary value problems for quasilinear second order elliptic boundary value problems, Nonlinear Analysis, TMA, 2 (1978), 263–309.CrossRefMATHGoogle Scholar
  61. [61]
    K. Schmitt: Positive solutions of semilinear elliptic equations, pp. 447–500 in Toplogical Methods in Nonlinear Differential Equations and Inclusions, Granas/Frigon editors, Kluwer, Boston, 1995.Google Scholar
  62. [62]
    M. Struwe: Variational Methods, Springer-Verlag, New York, 1990.CrossRefMATHGoogle Scholar
  63. [63]
    A. Szulkin: Ljusternik-Schnirelmann theory on C1 — manifolds, Ann. Inst. Henri Poincaré, 5 (1988), 119–139.MATHMathSciNetGoogle Scholar
  64. [64]
    E. Zeidler: Nonlinear Functional Analysis and its Applications, Vol. I: Fixed-Point Theorems, Springer, Berlin, 1986.CrossRefGoogle Scholar
  65. [65]
    E. Zeidler: Nonlinear Functional Analysis and its Applications, Vol. IIB: Nonlinear Monotone Operators, Springer, Berlin, 1990.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1996

Authors and Affiliations

  • R. Manásevich
    • 1
  • K. Schmitt
    • 2
  1. 1.University of ChileSantiagoChile
  2. 2.University of UtahSalt Lake CityUSA

Personalised recommendations