Skip to main content

Upper and Lower Solutions in the Theory of Ode Boundary Value Problems: Classical and Recent Results

  • Chapter
Book cover Non Linear Analysis and Boundary Value Problems for Ordinary Differential Equations

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 371))

Abstract

The method of upper and lower solutions for ordinary differential equation was introduced in 1931 by G. Scorza Dragoni for a Dirichlet problem. Since then a large number of contributions enriched the theory. Among others, one has to point out the pioneer work of M. Nagumo who associated his name with derivative dependent right hand side.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Adje, Sur et sous solutions dans les équations différentielles discontinues avec conditions aux limites non linéaires, Thèse de Doctorat, U.C.L., Louvainla-Neuve (1987).

    Google Scholar 

  2. A. Adje, Sur et sous-solutions généralisées et problèmes aux limites du second ordre, Bull. Soc. Math. Belg. 42 sen. B (1990), 347–368.

    Google Scholar 

  3. K. Ako, On the Dirichlet problem for quasi-linear elliptic differential equations of the second order, J. Math. Soc. Japan 13 (1961), 45–62.

    Article  MATH  MathSciNet  Google Scholar 

  4. K. Ako, Subfunctions for ordinary differential equations II, Funkcialaj Ekvacioj 10 (1967), 145–162.

    MATH  MathSciNet  Google Scholar 

  5. K. Ako, Subfunctions for ordinary differential equations VI, J. Fac. Sci. Univ. Tokyo 16 (1969), 149–156.

    MATH  MathSciNet  Google Scholar 

  6. H. Amann, On the existence of positive solutions of nonlinear elliptic boundary value problems, Indiana Univ. Math. J. 21 (1971), 125–146.

    Article  MathSciNet  Google Scholar 

  7. H. Amann, Existence of multiple solutions for nonlinear elliptic boundary value problems, Indiana Univ. Math. J. 21 (1972), 925–935.

    Article  MATH  MathSciNet  Google Scholar 

  8. H. Amann, On the number of solutions of nonlinear equations in ordered Ba-nach spaces, J. Funct. Anal. 11 (1972), 346–384.

    Article  MATH  MathSciNet  Google Scholar 

  9. H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Review 18 (1976), 620–709.

    Article  MATH  MathSciNet  Google Scholar 

  10. H. Amann, A. Ambrosetti and G. Mancini, Elliptic equations with noninvertible Fredholm linear part and bounded nonlinearities, Math. Z. 158 (1978), 179–194.

    Article  MATH  MathSciNet  Google Scholar 

  11. H. Amann and P. Hess, A multiplicity result for a class of elliptic boundary value problems, Proc. Royal Soc. Edinburgh 84A (1979), 145–151.

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Ambrosetti and G. Prodi, On the inversion of some differentiable mappings with singularities between Banach spaces, Ann. Mat. Pure Appl. 93 (1972), 231–247.

    Article  MATH  MathSciNet  Google Scholar 

  13. P.B. Bailey, L.F. Shampine and P.E. Waltman, Nonlinear two point boundary value problems, Academic Press, New York (1968).

    MATH  Google Scholar 

  14. J.V. Baxley, A singular nonlinear boundary value problem: membrane response of a spherical cap, SIAM J. Appl. Math. 48 (1988), 497–505.

    Article  MATH  MathSciNet  Google Scholar 

  15. A.K. Ben-Naoum and C. De Coster, On the existence and multiplicity of positive solutions of the p-Laplacian separated boundary value problem, Recherches de mathématique 46, preprint UCL 1995.

    Google Scholar 

  16. H. Berestycki, Le nombre de solutions de certains problèmes semilinéaires elliptiques, J. Funct. Anal. 40 (1981), 1–29.

    Article  MATH  MathSciNet  Google Scholar 

  17. M.S. Berger and E. Podolak, On the solutions of a nonlinear Dirichlet problem, Indiana Univ. Math. J. 24 (1975), 837–846.

    Article  MATH  MathSciNet  Google Scholar 

  18. L.E. Bobisud, D. O’Regan and W.D. Royalty, Solvability of some nonlinear boundary value problem, Nonlinear Anal. T.M.A. 12 (1988), 855–869.

    Article  MATH  MathSciNet  Google Scholar 

  19. Bongsoo Ko, The third solution of semilinear elliptic boundary value problems and applications to singular perturbation problems, J. Diff. Equ. 101 (1993), 1–14.

    Article  MATH  Google Scholar 

  20. H. Brezis, Analyse fonctionnelle: Théorie et applications, Masson, Paris (1983).

    MATH  Google Scholar 

  21. H. Brezis and L. Nirenberg, H 1 versus C 1 local minimizers, C. R. Acad. Sci. Paris 317 (1993), 465–472.

    MATH  MathSciNet  Google Scholar 

  22. R.F. Brown, A topological introduction to nonlinear analysis, Birkhäuser, Boston 1993.

    Book  MATH  Google Scholar 

  23. K.J. Brown and H. Budin, Multiple positive solutions for a class of nonlinear boundary value problem, J. Math. Anal. Appl. 60 (1977), 329–338.

    Article  MATH  MathSciNet  Google Scholar 

  24. A. Cabada and L. Sanchez, A positive operator approach to the Neumann problem for a second order ordinary differential equation, preprint.

    Google Scholar 

  25. K.C. Chang, A variant mountain pass lemma, Scientia Sinica (Series A) 26 (1983), 1241–1255.

    MATH  MathSciNet  Google Scholar 

  26. K.C. Chang, Variational methods and sub-and super-solutions, Scientia Sinica (Series A) 26 (1983), 1256–1265.

    MATH  MathSciNet  Google Scholar 

  27. R. Chiappinelli, J. Mawhin and R. Nugari, Generalized Ambrosetti-Prodi conditions for nonlinear two-points boundary value problems, J. Diff. Equ. 69 (1987), 422–434.

    Article  MATH  MathSciNet  Google Scholar 

  28. P. Clement and L.A. Peletier, An anti-maximum principle for second order elliptic operators, J. Diff. Equ. 34 (1979), 218–229.

    Article  MATH  MathSciNet  Google Scholar 

  29. F.J.S.A. Corrêa, On pairs of positive solutions for a class of sub-superlinear elliptic problems, Diff. Int. Equ. 5 (1992), 387–392.

    MATH  Google Scholar 

  30. D.G. Costa and J.V.A. Goncalves, On the existence of positive solutions for a class of non-selfadjoint elliptic boundary value problems, Applicable Analysis 31 (1989), 309–320.

    Article  MATH  MathSciNet  Google Scholar 

  31. R. Courant and D. Hilbert, Methods of Mathematical Physics, vol. II, Inter-science, New York, 1962.

    MATH  Google Scholar 

  32. E.N. Dancer, On the ranges of certain weakly nonlinear elliptic partial differential equations, J. Math. Pures Appl. 57 (1978), 351–366.

    MATH  MathSciNet  Google Scholar 

  33. C. De Coster, La méthode des sur et sous solutions dans l’étude de problèmes aux limites, Thèse de Doctorat, U.C.L., Louvain-la-Neuve (1994).

    Google Scholar 

  34. C. De Coster, Pairs of positive solutions for the one-dimensional p-laplacian, Nonlinear Anal. T.M.A. 23 (1994), 669–681.

    Article  MATH  Google Scholar 

  35. C. De Coster, M.R. Grossinho and P. Habets, On pairs of positive solutions for a singular boundary value problem,to appear in Applicable Analysis.

    Google Scholar 

  36. C. De Coster and P. Habets, A two parameters Ambrosetti-Prodi problem, to appear in Portugaliæ Mathematica.

    Google Scholar 

  37. D.G. de Figueiredo, Lectures on boundary value problems of the AmbrosettiProdi type, Atas 12e Semin. Brasileiro Analise, Sao Paulo, (1980), 230–291.

    Google Scholar 

  38. D.G. de Figueiredo, Positive solutions of semilinear elliptic problems, Lecture Notes in Math., vol. 957, Springer-Verlag, Berlin, 1982, 34–87.

    Google Scholar 

  39. D.G. de Figueiredo, Positive solutions for some classes of semilinear elliptic problems, Proceedings of Symposia in Pure Mathematics 45 (1986), 371–379.

    Article  Google Scholar 

  40. D.G. de Figueiredo and P.L. Lions, On pairs of positive solutions for a class of semilinear elliptic problems, Indiana University Math. J. 34 (1985), 591–606.

    Article  MATH  Google Scholar 

  41. D.G. de Figueiredo and W.N. Ni, Perturbations of second order linear elliptic problems by nonlinearities without Landesman-Lazer condition, Nonlinear Anal., T.M.A. 5 (1979), 629–634.

    Article  Google Scholar 

  42. D.G. de Figueiredo and S. Solimini, A variational approach to superlinear elliptic problems, Comm. P.D.E. 9 (1984), 699–717.

    Article  MATH  Google Scholar 

  43. J. Deuel and P. Hess, A criterion for the existence of solutions of non-linear elliptic boundary value problems,Proc. Royal Soc. Edinburgh 74A (1974/75), 49–54.

    Google Scholar 

  44. J.I. Diaz, Nonlinear differential equations and free boundaries. Vol 1. Elliptic equations, Pitman Research Notes in Math. 106 (1985).

    Google Scholar 

  45. H. Epheser, Ober die existenz der lösungen von randwertaufgaben mit gewöhnlichen, nichtlinearen differentialgleichungen zweiter ordnung, Math. Zeitschr. 61 (1955), 435–454.

    Article  MATH  MathSciNet  Google Scholar 

  46. C. Fabry, personal communication.

    Google Scholar 

  47. C. Fabry and P. Habets, The Picard boundary value problem for nonlinear second order vector differential equations, J. Diff. Equ. 42 (1981), 186–198.

    Article  MATH  MathSciNet  Google Scholar 

  48. C. Fabry and P. Habets, Upper and lower solutions for second-order boundary value problems with nonlinear boundary conditions, Nonlinear Anal. T.M.A. 10 (1986), 985–1007.

    Article  MATH  MathSciNet  Google Scholar 

  49. A. Fonda, On the existence of periodic solutions for scalar second order differential equations when only the asymptotic behaviour of the potential is known, Proc. A.M.S 119 (1993), 439–445.

    Article  MATH  MathSciNet  Google Scholar 

  50. A. Fonda and J. Mawhin, Quadratic forms, weighted eigenfunctions and boundary value problems for nonlinear second order ordinary differential equations, Proc. R. Soc. Edinburgh 112A (1989), 145–153.

    Article  MATH  MathSciNet  Google Scholar 

  51. G. Fournier and J. Mawhin, On periodic solutions of forced pendulum-like equations, J. Diff. Equ. 60 (1985), 381–395.

    Article  MATH  MathSciNet  Google Scholar 

  52. S. Fucík, Solvability of nonlinear equations and boundary value problems, Reidel, Dordrecht, 1980.

    MATH  Google Scholar 

  53. J.A. Gatica, V. Oliker and P. Waltman, Singular nonlinear boundary value problems for second order ordinary differential equations, J. Diff. Equ. 79 (1989), 62–78.

    Article  MATH  MathSciNet  Google Scholar 

  54. J.P. Gossez and P. Omani, Periodic solutions of a second order ordinary differential equation: a necessary and sufficient condition for nonresonance, J. Diff. Equ. 94 (1991), 67–82.

    Article  MATH  Google Scholar 

  55. J.P. Gossez and P. Omani, A necessary and sufficient condition of nonresonance for a semilinear Neumann problem, Proc. A.M.S. 114 (1992), 433–442.

    Article  MATH  Google Scholar 

  56. J.P. Gossez and P. Omani, Non-ordered lower and upper solutions in semi-linear elliptic problems, Comm. P. D. E. 19 (1994), 1163–1184.

    Article  MATH  Google Scholar 

  57. J.P. Gossez and P. Omani, On a semilinear elliptic Neumann problem with asymmetric nonlinearities, Trans. A.M.S. 347 (1995), 2553–2562.

    Google Scholar 

  58. V.V. Gudkov and A.J. Lepin, On necessary and sufficient conditions for the solvability of certain boundary-value problems for a second-order ordinary differential equation, Dokl. Akad. Nauk SSSR 210 (1973), 800–803.

    MathSciNet  Google Scholar 

  59. Z. Guo, Solvability of some singular nonlinear boundary value problems and existence of positive radial solutions of some nonlinear elliptic problems, Nonlinear Anal. T.M.A. 16 (1991), 781–790.

    Article  MATH  Google Scholar 

  60. P. Habets and M. Laloy, Perturbations singulières de problèmes aux limites: Les sur-et sous-solutions, Séminaire de Mathématique Appliquée et Mécanique 76, U.C.L. (1974).

    Google Scholar 

  61. P. Habets and P. Omani, Existence and localization of solutions of second order elliptic problems using lower and upper solutions in the reversed order, to appear in Topological Methods in Nonlinear Analysis.

    Google Scholar 

  62. P. Habets and L. Sanchez, Periodic,solutions of some Liénard equations with singularities, Proc. A.M.S. 109 (1990), 1035–1044.

    MATH  MathSciNet  Google Scholar 

  63. P. Habets and F. Zanolin, Upper and lower solutions for a generalized Emden-Fowler equation, J. Math. Anal. Appl. 181 (1994), 684–700.

    Article  MATH  MathSciNet  Google Scholar 

  64. P. Habets and F. Zanolin, Positive solutions for a class of singular boundary value problem, Boll. U.M.I. (7) 9-A (1995), 273–286.

    Google Scholar 

  65. G. Harris, A nonlinear Dirichlet problem with nonhomogeneous boundary data, Applicable Anal. 33 (1989), 169–182.

    Article  MATH  Google Scholar 

  66. P. Hess, An antimaximum principle for linear elliptic equations with an indefinite weight function, J. Diff. Equ. 41 (1981), 369–374.

    Article  MathSciNet  Google Scholar 

  67. S.I. Hudjaev, Boundary problems for certain quasi-linear elliptic equations, Soviet Math. Dokl. 5 (1964), 188–192.

    Google Scholar 

  68. R. Iannacci, M.N. Nkashama and J.R. Ward, Jr., Nonlinear second order elliptic partial differential equations at resonance, Trans. A.M.S. 311 (1989), 711–726.

    Article  MATH  MathSciNet  Google Scholar 

  69. F. Inkmann, Existence and multiplicity theorems for semilinear elliptic equations with nonlinear boundary conditions, Indiana Univ. Math. J. 31 (1982), 213–221.

    Article  MATH  MathSciNet  Google Scholar 

  70. L.K. Jackson, Subfunctions and second-order ordinary differential inequalities, Advances in Math. 2 (1967), 307–363.

    Article  Google Scholar 

  71. J. Janus and J. Myjak, A generalized Emden-Fowler equation with a negative exponent, Nonlinear Analysis T.M.A. 23 (1994), 953–970.

    Article  MATH  MathSciNet  Google Scholar 

  72. R. Kannan and K. Nagle, Forced oscillations with rapidly vanishing nonlinearites, Proc. A.M.S. 111 (1991), 385–393.

    Article  MATH  MathSciNet  Google Scholar 

  73. R. Kannan and R. Ortega, An asymptotic result in forced oscillations of pendulum-type equations, Applicable Analysis 22 (1986), 45–53.

    Article  MATH  MathSciNet  Google Scholar 

  74. J. Kazdan and F. Warner, Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math. 28 (1975), 567–597.

    Article  MATH  MathSciNet  Google Scholar 

  75. H.B. Keller and D.S. Cohen, Some positone problems suggested by non-linear heat generation, J. Math. Mech. 16 (1967), 1361–1376.

    MATH  MathSciNet  Google Scholar 

  76. H.W. Knobloch, Eine neue methode zur approximation periodischer lösungen nicht-linearer differentialgleichungen zweiter ordnung, Math. Zeitschr. 82 (1963), 177–197.

    Article  MATH  MathSciNet  Google Scholar 

  77. Y.S. Kolesov, Periodic solutions of quasilinear parabolic equations of second order, Trans. Moscow Math. Soc. 21 (1970), 114–146.

    MathSciNet  Google Scholar 

  78. E.M. Landesman and A.C. Lazer, Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech. 19 (1970), 609–623.

    MATH  MathSciNet  Google Scholar 

  79. A.C. Lazer and P.J. McKenna, On the number of solutions of a nonlinear Dirichlet problem, J. Math. Anal. Appl. 84 (1981), 282–294.

    Article  MATH  MathSciNet  Google Scholar 

  80. A.C. Lazer and P.J. McKenna, On a conjecture related to the number of solutions of a nonlinear Dirichlet problem, Proc. Royal Soc. Edinburgh 95A (1983), 275–283.

    Article  MATH  MathSciNet  Google Scholar 

  81. A.C. Lazer and P.J. McKenna, On a conjecture on the number of solutions of a nonlinear Dirichlet problem with jumping nonlinearity, in “Trends in theory of nonlinear differential equations (Arlington Texas 1982) L. N. Pure and Appl. Math. 90, Dekker, New-York, (1984), 301–313.

    Google Scholar 

  82. A.C. Lazer and S. Solimini, On periodic solutions of nonlinear differential equations with singularities, Proc. A.M.S. 99 (1987), 109–114.

    Article  MATH  MathSciNet  Google Scholar 

  83. S. Leela, Monotone method for second order periodic boundary value problems, Nonlinear Analysis, T.M.A. 7 (1983), 349–355.

    Article  MATH  MathSciNet  Google Scholar 

  84. P.L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Review 24 (1982), 441–467.

    Article  MATH  MathSciNet  Google Scholar 

  85. A.G. Lomtatidze, Positive solutions of boundary value problems for second order ordinary differential equations with singular points, Differentsial’nye Uravneniya 23 (1987), 1685–1692.

    MathSciNet  Google Scholar 

  86. J. Mawhin, Compacité, monotonie et convexité dans l’étude de problèmes aux limites semi-linéaires, Séminaire d’analyse moderne 19, Université de Sherbrooke (1981).

    Google Scholar 

  87. J. Mawhin, Periodic oscillations of forced pendulum-like equations, in “Ordinary and Partial Diff. Equ., Proceed. Dundee 1982”, Lectures Notes in Math. 964, Springer, Berlin (ed: Everitt, Sleeman ) (1982), 458–476.

    Google Scholar 

  88. J. Mawhin, Boundary value problems with nonlinearities having infinite jumps, Comment. Math. Univ. Carolin. 25 (1984), 401–414.

    MATH  MathSciNet  Google Scholar 

  89. J. Mawhin, Points fixes, points critiques et problèmes aux limites, Sém. de Math. Supérieures, Univ. Montréal, (1985).

    MATH  Google Scholar 

  90. J. Mawhin, Problèmes de Dirichlet variationnels non linéaires, Sém. de Math. Supérieures, Univ. Montréal, (1987).

    MATH  Google Scholar 

  91. J. Mawhin, Recent results on periodic solutions of the forced pendulum equation, Rend. Ist. Matem. Univ. Trieste 19 (1987), 119–129.

    MATH  MathSciNet  Google Scholar 

  92. J. Mawhin, The forced pendulum: A paradigm for nonlinear analysis and dynamical systems, Expo. Math. 6 (1988), 271–287.

    MATH  MathSciNet  Google Scholar 

  93. J. Mawhin, Boundary value problems for nonlinear ordinary differential equations: from successive approximations to topology, in “Development of Mathematics, 1900–1950” (ed: J.P. Pier ), Birkhauser, Basel (1994), 445–478.

    Google Scholar 

  94. J. Mawhin and J.R. Ward, Nonresonance and existence for nonlinear elliptic boundary value problems, Nonlinear Anal. T.M.A. 5 (1981), 677–684.

    Article  MATH  MathSciNet  Google Scholar 

  95. J. Mawhin and J.R. Ward, Nonuniform nonresonance conditions at the two first eigenvalues for periodic solutions of forced Lienard and Duffing equations, Rocky Mountain J. Math. 12 (1982), 643–654.

    Article  MATH  MathSciNet  Google Scholar 

  96. J. Mawhin and M. Willem, Multiple solutions of the periodic boundary value problem for some forced pendulum-type equations, J. Diff. Equ. 52 (1984), 264–287.

    Article  MATH  MathSciNet  Google Scholar 

  97. E.J. McShane, Integration, Princeton Univ. Press., Princeton (1944).

    MATH  Google Scholar 

  98. M. Nagumo, Ober die differentialgleichung y″ = f (t, y, y′), Proc. Phys-Math. Soc. Japan 19 (1937), 861–866.

    Google Scholar 

  99. M. Nagumo, On principally linear elliptic differential equations of the second order, Osaka Math. J. 6 (1954), 207–229.

    MATH  MathSciNet  Google Scholar 

  100. J.J. Nieto, Nonlinear second order boundary value problems with Carathéodory function, Applicable Analysis 34 (1989), 111–128.

    Article  MATH  Google Scholar 

  101. P. Omani, Non-ordered lower and upper solutions and solvability of the periodic problem for the Liénard and the Rayleigh equations, Rend. Ist. Mat. Univ. Trieste 20 (1988), 54–64.

    Google Scholar 

  102. P. Omani and M. Trombetta, Remarks on the lower and upper solution method for second and third-order periodic boundary value problem, Applied Math. Comput. 50 (1992), 71–82.

    Google Scholar 

  103. P. Omani and W. Ye, Necessary and sufficient conditions for the existence of periodic solutions of second order ODE with singular nonlinearities, Diff. Int. Equ. 8 (1995), 1843–1858.

    Google Scholar 

  104. P. Omani and F. Zanolin, Infinitely many solutions of a quasilinear elliptic problem with an oscillatory potential, preprint SISSA 1995.

    Google Scholar 

  105. L.C. Piccinini, G. Stampacchia and G. Vidossich, Ordinary differential equations in n : Problems and methods, Applied Math. Sciences 39, Springer-Verlag (1984).

    Google Scholar 

  106. N. Rouche and J. Mawhin, Equations différentielles ordinaires, Masson, Paris, (1973).

    MATH  Google Scholar 

  107. D. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J. 21 (1972), 979–1000.

    Article  MATH  MathSciNet  Google Scholar 

  108. D. Sattinger, Topics in stability and bifurcation theory, Lecture Notes vol. 309, Springer, Berlin, 1973.

    MATH  Google Scholar 

  109. K. Schmitt, Bounded solutions of nonlinear second order differential equations, Duke Math. J. 36 (1969), 237–244.

    Article  MATH  MathSciNet  Google Scholar 

  110. K. Schmitt, Boundary value problems for quasilinear second order elliptic equations, Nonlinear Anal. T.M.A. 2 (1978), 263–309.

    Article  MATH  Google Scholar 

  111. K. Schrader, Differential inequalities for second and third order equations, J. Differential Equations 23 (1977), 203–215.

    Article  MathSciNet  Google Scholar 

  112. G. Scorza Dragoni, Il problema dei valori ai limiti studiato in grande per gli integrali di una equazione differenziale del secondo ordine, Giornale di Mat (Battaglini) 69 (1931), 77–112.

    Google Scholar 

  113. G. Scorza Dragoni, Il problema dei valori ai limiti studiato in grande per le equazioni differenziali del secondo ordine, Math. Ann. 105 (1931), 133–143.

    Article  MathSciNet  Google Scholar 

  114. G. Scorza Dragoni, Su un problema di valori ai limite per le equazioni differenziali ordinarie del secondo ordine, Rend. Semin. Mat. R. Univ. Roma 2 (1938), 177–215. Aggiunta, ibid, 253–254.

    Google Scholar 

  115. G. Scorza Dragoni, Elementi uniti di transformazioni funzionali e problemi di valori ai limiti, Rend. Semin. Mat. R. Univ. Roma 2 (1938), 255–275.

    Google Scholar 

  116. G. Scorza Dragoni, Intorno a un criterio di esistenza per un problema di valori ai limiti, Rend. Semin. R. Accad. Naz. Lincei 28 (1938), 317–325.

    Google Scholar 

  117. L.F. Shampine and G.M. Wing, Existence and Uniqueness of Solutions of a Class of Nonlinear Elliptic Boundary Value Problems, J. Math. and Mech. 19 (1970), 971–979.

    MATH  MathSciNet  Google Scholar 

  118. R. Shivaji, A remark on the existence of three solutions via sub-super solutions, Nonlinear Analysis and Applications (Ed: V. Lakshmikantham ), Dekker Inc, New York and Basel, (1987), 561–566.

    Google Scholar 

  119. S.D. Taliaferro, A nonlinear singular boundary value problem, Nonlinear Analysis T.M.A. 3 (1979), 897–904.

    Article  MATH  MathSciNet  Google Scholar 

  120. A. Tineo, Existence of two periodic solutions for the periodic equation x = g(t, x), J. Math. Anal. Appl. 156 (1991), 588–596.

    Article  MATH  MathSciNet  Google Scholar 

  121. A. Tineo, Existence theorems for a singular two-point Dirichlet problem, Nonlinear Analysis T.M.A. 19 (1992), 323–333.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Wien

About this chapter

Cite this chapter

De Coster, C., Habets, P. (1996). Upper and Lower Solutions in the Theory of Ode Boundary Value Problems: Classical and Recent Results. In: Zanolin, F. (eds) Non Linear Analysis and Boundary Value Problems for Ordinary Differential Equations. International Centre for Mechanical Sciences, vol 371. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2680-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2680-6_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82811-3

  • Online ISBN: 978-3-7091-2680-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics