Direct and Large-Eddy Simulations of Coherent Vortices in Three-Dimensional Turbulence: Geophysical and Industrial Applications

  • O. Métais
Part of the International Centre for Mechanical Sciences book series (CISM, volume 353)


We first discuss the concept of coherent vortex. Some elementary vortex interactions which appear in transitional or turbulent shear flow are described such as the formation of spiral vortices, and the pairing of two vortices of same sign. The three-dimensional stretching and turning mechanisms leading to longitudinal hairpin vortices (aligned or staggered mode) are presented. Then the formalism of large-eddy simulations (LES) is recalled in details and classical as well as more recent subgrid-scale models are considered: Smagorinsky’s model, Kraichnan’s spectral eddy-viscosity model, structure-function models, and the dynamic model. Various examples of numerically-simulated three-dimensional flows and of coherent vortices imbedded in them are displayed such as three-dimensional isotropic turbulence, free-shear flows, separated flows and boundary-layers. Comparisons with experimental data are presented and geophysical and industrial applications are discussed. We finally show how a solid-body rotation may drastically modify the free-shear layer topology. The shear/Coriolis linear instability yields a purely longitudinal mode for anticyclonic moderate rotation. Numerical simulations show how this mode evolves non-linearly into concentrated longitudinal hairpin vortices of absolute vorticity.


Spanwise Direction Rossby Number Hairpin Vortex Longitudinal Vortex Coherent Vortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abry, P., Fauve, S., Flandrin P. & Larociie, C. 1994 Analysis of pressure fluctuations in swirling turbulent flows. Journal de Physique, 4, pp 725–733.CrossRefGoogle Scholar
  2. Batchelor, G.K. 1967 An introduction to fluid dynamics,Cambridge University Press.Google Scholar
  3. Batchelor, G.K., Canuto, C. & Chasnov, J. 1992 Homogeneous buoyancy generated turbulence J. Fluid Mech., 235, pp 349–378.MathSciNetCrossRefMATHADSGoogle Scholar
  4. Bartello, P., Métais, O. & Lesieur, M. 1994 Coherent structures in rotating three-dimensional turbulence. J. Fluid Mech., 273, pp 1–29.MathSciNetCrossRefADSGoogle Scholar
  5. Bernal, L.P. & Roshko, A. 1986 Streamwise vortex structure in plane mixing layer J. Fluid Mech., 170, pp 499–525.CrossRefADSGoogle Scholar
  6. Brachet, M.E. 1991 Direct simulation of three-dimensional turbulence in the Taylor-Green vortex Fluid Dyn. Research, 8, pp 1–8.CrossRefADSGoogle Scholar
  7. Bradshaw P. & Koh, M. 1981 A note on Poisson’s equation for pressure in a turbulent flow Phys. Fluids, 24 (4), p 777.CrossRefADSGoogle Scholar
  8. Breidenthal, R. 1981 Structure in turbulent mixing layers and wakes using a chemical reaction, J. Fluid Mech., 109, pp 1–24.CrossRefADSGoogle Scholar
  9. Brown, G.L. & Roshko, A. 1974 On density effects and large structure in turbulent mixing layers J. Fluid Mech., 64, pp 775–816.CrossRefADSGoogle Scholar
  10. Comte, P. 1989 Etude par simulation numérique de la transition à la turbulence en écoulement cisaillé libre. PhD dissertation, National Polytechnic Institute, Grenoble.Google Scholar
  11. Comte, P., Lesieur, M., & Lamballais, E. 1992 Large and small-scale stirring of vorticity and a passive scalar in a 3D temporal mixing layer. Phys. Fluids A, 4 (12), pp 2761–2778.CrossRefADSGoogle Scholar
  12. Comte, P., Métais, O., David, E., Ducros, F., Gonze, M.-A. & Lesieur, M. 1994 Subgrid-scale models based upon the second-order structure function of velocity. in Direct and Large-Eddy Simulation I, P.R. Voke et al. (eds), Kluwer Academic Publishers, pp 61–72.Google Scholar
  13. Couder, Y. 1984 Two-dimensional grid turbulence in a thin liquid film J. Phys. Lett., 45, pp 353–360.CrossRefGoogle Scholar
  14. Couder, Y, & Basdevant, C. 1986 Experimental and numerical study of vortex couples in two-dimensional flows, J. Fluid Mech., 173, pp 225–251.CrossRefADSGoogle Scholar
  15. David, E. 1993 Modélisation des écoulements compressibles et hypersoniques: une approche instationnaire, PhD dissertation, National Polytechnic Institute, Grenoble.Google Scholar
  16. Deardorff, J.W. 1970 A numerical study of three-dimensional turbulent channel flow at large Reynolds number J. Fluid Mech., 41, pp 453–480.CrossRefMATHADSGoogle Scholar
  17. Ducros, F. 1995 Simulations numériques directes et des grandes échelles de couches limites compressibles. PhD dissertation, National Polytechnic Institute, Grenoble.Google Scholar
  18. Ducros, F., Comte, P. & Lesieur, M. 1994 Ropes and lambda-vortices in direct and large-eddy simulations of a high-Mach number boundary layer over a flat plate. Turbulent Shear Flows 9, in press, Springer-Verlag.Google Scholar
  19. Drazin, P.G. & Reid, W.H. 1981 Hydrodynamic stability, Cambridge University Press.Google Scholar
  20. Eaton, J. K. & Johnston, J. P. 1980 Turbulent flow reattachment: an experimental study of the flow and structure behind a backward-facing step. Stanford - University, Rep. MD-39.Google Scholar
  21. Fallon, B. 1994 Simulations des Grandes Echelles d’Ecoulements Turbulents Stratifiés en Densité. PhD dissertation. National Polytechnic Institute, Grenoble.Google Scholar
  22. Fouillet, Y. 1991 Contribution à l’étude par expérimentaion numérique des écoulements cisaillés libres: effets de compressibilité, PhD dissertation, National Polytechnic Institute, Grenoble.Google Scholar
  23. Franc, J.P., Michel, J.M. & Lesieur, M. 1982 Structures rotationnelles biet tri-dimensionnelles dans un sillage cavitant. C.R. Acad. Sc. Paris., 295, pp. 773–777.ADSGoogle Scholar
  24. Herbert, T. 1988 Secondary instability of boundary layers. Ann. Rev. Fluid Mech., 20, pp 487–526.CrossRefADSGoogle Scholar
  25. Germano, M. 1992 Turbulence: the filtering approach. J. Fluid Mech., 238, pp 325–336.MathSciNetCrossRefMATHADSGoogle Scholar
  26. Gonze, M.-A. 1993 Simulation numérique des sillages en transition à la turbulence. PhD dissertation, National Polytechnic Institute, Grenoble.Google Scholar
  27. Klebanoff, P.S., Tidstrom, K.D. & Sargent, L.M. 1962 The three-dimensional nature of boundary layer instability. J. Fluid Mech., 12, pp 1–34.CrossRefMATHADSGoogle Scholar
  28. Kline, S.J., Reynolds, W.C., Schraub, F.A. & Runstadler, P.W. 1967 The structure of turbulent-boundary layers. J. Fluid Mech., 30, pp 741–773.CrossRefADSGoogle Scholar
  29. Konrad, J.H. 1976 An experimental investigation of mixing in two-dimensional turbulent shear flows with applications to diffusion-limited chemical reactions. PhD dissertation, California Institute of Technology.Google Scholar
  30. Kraichnan, R.H. 1976 Eddy viscosity in two and three dimensions. J. Atmos. Sci., 33, pp 1521–1536.CrossRefADSGoogle Scholar
  31. Lasheras, J.C. & Meiburg, E. 1990 Three-dimensional vorticity modes in the wake of a flat plate. Phys. Fluids A, 2 (3), pp 371–380.CrossRefADSGoogle Scholar
  32. Lesieur, M. 1990 Turbulence in Fluid, (second revised edition), Kluwer Academic Publishers.Google Scholar
  33. Lesieur, M., Comte, P. & Métais, O. 1994 Numerical simulations of coherent vortices in turbulence, to appear in Applied Mechanics Review.Google Scholar
  34. Lesieur, M & Métais, O. 1995 New trends in large-eddy simulations of turbulence. Annual Rev. Fluid Mech.,28, in press.Google Scholar
  35. Lesieur, M & Métais, O. 1994 Turbulence and coherent vortices, in Computational Fluid Dynamics, Les Houches, Session LIX,M. Lesieur, P. Comte & J. Zinn-Justin, eds., in press,North-Holland.Google Scholar
  36. Lesieur, M. & Rogallo, R. 1989 Large-eddy simulation of passive scalar diffusion in isotropic turbulence. Phys. Fluids A, 1 (4), pp 718–722.CrossRefADSGoogle Scholar
  37. Lesieur, M., Yanase, S. & Métais, O. 1991 Stabilizing and destabilizing effects of a solid-body rotation upon quasi-two-dimensional shear layers. Phys. Fluids A 3 (3), pp 403–407.CrossRefADSGoogle Scholar
  38. Lin, S.J. & Corcos, G.M. 1984 The mixing layer: deterministic models of a turbulent flow. Part 3. The effect of plane strain on the dynamics of streamwise vortices. J. Fluid Mech., 141, pp 139–178.CrossRefMATHADSGoogle Scholar
  39. Métais, O. & Lesieur, M. 1992 Spectral large-eddy simulations of isotropic and stably-stratified turbulence, J. Fluid Mech., 239, pp 157–194.MathSciNetCrossRefMATHADSGoogle Scholar
  40. Métais, O., Flores, C., Yanase, S., Riley, J.J. & Lesieur, M. 1995 Rotating free-shear flows Part 2: numerical simulations J. Fluid Mech. in press.Google Scholar
  41. Métais, O., Yanase, S., Flores, C., Bartello, P. & Lesieur, M. 1992, Reorganization of coherent vortices in shear layers under the action of solid-body rotation. In Turbulent Shear Flows VIII, Eds U. Schumann et al, Springer-Verlag, pp 415–430.Google Scholar
  42. Michalke, A. 1964 On the inviscid instability of the hyperbolic tangent velocity profile. J. Fluid Mech., 19, pp 543–556.MathSciNetCrossRefMATHADSGoogle Scholar
  43. Moin, P. & Kim, J. 1982 Numerical investigation of turbulent channel flow. J. Fluid Mech., 118, pp 341–377.CrossRefMATHADSGoogle Scholar
  44. Moinat, P. 1994 Application des techniques de simulation des grandes échelles un écoulement en géométrie complexe: la marche en dérapage. PhD dissertation, National Polytechnic Institute, Grenoble.Google Scholar
  45. Moinat, P. & Lesieur, M. 1994 Large-eddy simulation of the turbulent flow over a swept backward-facing step. Proceeding of the International Symposium on Turbulence, Heat, and Mass Transfer, pp 1811–1816Google Scholar
  46. Monin, A.S. & Yaglom, A.M. 1975 Statistical Fluid Mechanics, Vol. 2, M.I.T. Press, 874 pp.Google Scholar
  47. Normand, X., Comte, P. & Lesieur, M. 1992 Numerical simulation of a spatially-growing mixing layer, La Recherche Aérospatiale, 6, pp 45–52.Google Scholar
  48. Normand X. & Lesieur, M. 1988 Direct and large-eddy simulation of transition in the compressible boundary layer. Theor. and Comp. Fluid Dynamics, 3, pp 231–252.CrossRefADSGoogle Scholar
  49. Nygaard, K.J. & Glezer A. 1990 Core instability of the spanwise vortices in a plane mixing layer. Phys. Fluids A, 2 (3), pp 461–464.CrossRefADSGoogle Scholar
  50. Orszag, S.A. 1971 Numerical simulations of incompressible flows within simple boundaries: accuracy. J. Fluid Mech., 49, pp 75–112.MathSciNetCrossRefMATHADSGoogle Scholar
  51. Pierrehumbert, R.T. & Widnall, S.E. 1982 The two-and three-dimensional instabilities of a spatially periodic shear layer. J. Fluid Mech., 114, pp 59–82.CrossRefMATHADSGoogle Scholar
  52. Sato, H. & Kuriki, K. 1961 The mechanism of transition in the wake of a thin plate placed parallel to a uniform flow. J. Fluid Mech., 11, pp 321–352.CrossRefMATHADSGoogle Scholar
  53. Silveira-Neto, A., Grand, D., Métais, O. & Lesieur, M. 1991 Large-eddy simulation ofthe turbulent flow in the downstream region of a backward-facing step. Phys. Rev. Letters, 66 (18), pp 2320–2323.CrossRefADSGoogle Scholar
  54. Silveira-Neto, A., Grand, D., Métais O. & Lesieur M. 1993. A numerical investigation of the coherent vortices in turbulence behind a backward-facing step. J. Fluid Mech., 256, pp 1–25.CrossRefMATHADSGoogle Scholar
  55. Smagorinsky, J. 1963 General circulation experiments with the primitive equations. Mon. Weath. Rev., 91 (3), pp 99–164.CrossRefADSGoogle Scholar
  56. Winant, C.D. & Browand, F.K. 1974 Vortex pairing, the mechanism of turbulent mixing layer growth at moderate Reynolds number. J. Fluid Mech., 63, pp 237–255.CrossRefADSGoogle Scholar
  57. Yanase, S., Flores, C., Métais, O. & Riley, J. J. 1993 Rotating free-shear flows. I. Linear stability analysis. Phys Fluids A, 5 (11), pp 2725–2737.CrossRefMATHADSGoogle Scholar

Copyright information

© Springer-Verlag Wien 1996

Authors and Affiliations

  • O. Métais
    • 1
    • 2
  1. 1.Polytechnical Institut of GrenobleFrance
  2. 2.University J. FourierGrenobleFrance

Personalised recommendations