New Aspects of Vortex Dynamics Relevant to Coherent Structures in Turbulent Flows

  • W. Schoppa
  • F. Hussain
Part of the International Centre for Mechanical Sciences book series (CISM, volume 353)


Vortex dynamics offers a tractable avenue for explaining the dynamics of coherent structures, which appear to be the dominant features of turbulent shear flows and are the key to predicting and controlling turbulence phenomena such as mixing, entrainment, chemical reaction, drag, and aerodynamic noise. With this in mind, a series of investigations have been undertaken in our group; herein we provide a summary of these studies to date. In particular, we survey coherent structure eduction in free and wall-bounded shear flows, our new generic definition of a vortex, incompressible and compressible vortex reconnection, internal core dynamics within vortices, core dynamics-induced mixing layer transition, helical wave decomposition to extract polarized vorticity wavepackets from turbulent flows, and dynamical coupling of coherent structures with fine-scale turbulence. In addition to reviewing specific contributions in these topics, the results are discussed in context of their generic relevance to turbulence physics.


Vortex Ring Vortex Core Vortex Tube Meridional Flow Core Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kline, S.J., Reynolds, W. D., Schraub, F.A. & Runstadler, P.W. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30, 741.CrossRefADSGoogle Scholar
  2. 2.
    Crow, S.C. & Champagne, F.H. 1971 Orderly structure in jet turbulence. J. Fluid Mech. 48, 547.CrossRefADSGoogle Scholar
  3. 3.
    Brown, G.L. & Roshko, A. 1974 On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64, 775.CrossRefADSGoogle Scholar
  4. 4.
    Laufer, J. 1983 Deterministic and stochastic aspects of turbulence. J. Appl. Mech. 50, 1079.CrossRefADSGoogle Scholar
  5. 5.
    Hussain, F. 1979 Investigations of coherent structures in free turbulent shear flows. Symposium on Turbulence, Univ. of Missouri-Rolla, p.207. Science Press.Google Scholar
  6. 6.
    Lumley, J. 1981 Coherent structures in turbulence. In Transition and Turbulence, (ed. Lumley, J ), p. 215. Academic.Google Scholar
  7. 7.
    Cantwell, B. 1981 Organized motion in turbulent flow. Ann. Rev. Fluid Mech. 13, 457.CrossRefADSGoogle Scholar
  8. 8.
    Fiedler, H. 1988 Coherent structures in turbulent flows. Prog. Aerospace Sci. 25, p. 231.CrossRefADSGoogle Scholar
  9. 9.
    Liu, J.T.C. 1989 Coherent structures in transitional and turbulent free shear flows. Ann. Rev. Fluid Mech. 21, 285.CrossRefADSGoogle Scholar
  10. 10.
    Robinson, S.K. 1991 Coherent motions in the turbulent boundary layer. Ann. Rev. Fluid Mech. 23, 601.CrossRefADSGoogle Scholar
  11. 11.
    Reynolds, W.C. & Hussain, F. 1972 The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiment. J. Fluid Mech. 54, 263.CrossRefADSGoogle Scholar
  12. 12.
    Poje, A.C. & Lumley, J.L. 1995 A model for large-scale structures in turbulent shear flows. J. Fluid Mech. 285, 349.MathSciNetCrossRefMATHADSGoogle Scholar
  13. 13.
    Goldshtik, M & Hussain, F. 1995 Structural approach to the modeling of a turbulent mixing layer. Phys. Rev. E (to appear).Google Scholar
  14. 14.
    Aubry, N., Holmes, P., Lumley, J.L. & Stone, E. 1988 The dynamics of coherent structures in the wall region of a turbulent boundary layer. J. Fluid Mech. 192, 115.MathSciNetCrossRefMATHADSGoogle Scholar
  15. 15.
    Prabhu, A. & Narasimha, R. 1972 Turbulent non-equilibrium wakes. J. Fluid Mech. 54, 19.CrossRefADSGoogle Scholar
  16. 16.
    Chomaz, J.M., Huerre, P. & Redekopp, L.G. 1988 Bifurcations to local and global modes in spatially-developing flows. Phys. Rev. Lett. 60, 25.CrossRefADSGoogle Scholar
  17. 17.
    Frisch, U., Sulem, P.-L. & Nelkin, M. 1978 A simple dynamical model of intermittent fully developed turbulence. J. Fluid Mech. 87, 719.CrossRefMATHADSGoogle Scholar
  18. 18.
    Broze, G. & Hussain, F. 1994 Nonlinear dynamics of forced transitional jets: periodic and chaotic attractors. J. Fluid Mech. 263, 93.MathSciNetCrossRefADSGoogle Scholar
  19. 19.
    Hussain, F. 1980 Coherent structures and studies of perturbed and unperturbed jets. Lecture Notes in Physics 136, 252.CrossRefADSGoogle Scholar
  20. 20.
    Hussain, F. & Melander, M.V. 1991 Understanding turbulence via vortex dynamics. In Recent Developments in Turbulence, (eds. S. Sarker et al.), p. 157. Springer.Google Scholar
  21. 21.
    Hussain, F. 1981 Role of coherent structures in turbulent shear flows. Proc. Indian Acad. Sci. (Engg. Sci.) 4, 129.Google Scholar
  22. 22.
    Bridges, J., Husain, H. & Hussain, F. 1989 Whither coherent structures? In Whither Turbulence? Turbulence at the Crossroads, (ed. Bridges, J., Husain, H. & Hussain, F ), p. 132. Springer.Google Scholar
  23. 23.
    Kida, S., Takaoka, M. & Hussain, F. 1991 Collision of two vortex rings. J. Fluid Mech. 230, 583.MathSciNetCrossRefMATHADSGoogle Scholar
  24. 24.
    Meng, H. & Hussain, F. 1991 Holographic particle velocimetry: a 3D measurement technique for vortex interactions, coherent structures and turbulence. Fluid Dyn. Res. 8, 33.CrossRefADSGoogle Scholar
  25. 25.
    Meng, H. & Hussain, F. 1995 Instantaneous flow field in an unstable vortex ring measured by holographic particle velocimetry. Phys. Fluids, 7, 9.CrossRefADSGoogle Scholar
  26. 26.
    Adrian, R.J. 1991 Particle imaging techniques for experimental fluid mechanics. Ann. Rev. Fluid Mech. 23, 261.CrossRefADSGoogle Scholar
  27. 27.
    Dahm, W.J.A., Su, L.K. & Southerland, K.B. 1992 A scalar imaging velocimetry technique for fully resolved four-dimensional vector velocity field measurements in turbulent flows. Phys. Fluids A 7, 2191.CrossRefADSGoogle Scholar
  28. 28.
    Schoppa, W., Hussain, F. & Metcalfe, R.W. 1995 A new mechanism of small-scale transition in a plane mixing layer: core dynamics of spanwise vortices. J. Fluid Mech. (in press)Google Scholar
  29. 29.
    Melander, M.V. & Hussain, F. 1994 Core dynamics in a vortex column. Fluid Dyn. Res., 13, 1.CrossRefADSGoogle Scholar
  30. 30.
    Melander, M.V. & Hussain, F. 1993 Polarized vorticity dynamics on a vortex column. Phys. Fluids A 5, 1992.MathSciNetCrossRefMATHADSGoogle Scholar
  31. 31.
    Melander, M.V., Hussain, F. & Basu, A. 1991 Breakdown of a circular jet into turbulence. Turb. Shear Flows 8, p. 15.5.1–15.5.6. Munich.Google Scholar
  32. 32.
    Hussain, F. 1986 Coherent structures and turbulence. J. Fluid Mech. 173, 303.CrossRefADSGoogle Scholar
  33. 33.
    Hussain, F. 1983 Coherent structures — reality and myth. Phys. Fluids. 26, 2816.CrossRefMATHADSGoogle Scholar
  34. 34.
    Cantwell, B. & Coles, D. 1983 An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder. J. Fluid Mech. 136, 321.CrossRefADSGoogle Scholar
  35. 35.
    Hussain, F. & Zaman, K.B.M.Q. 1980 Vortex pairing in a circular jet under controlled excitation. Part 2. Coherent structure dynamics. J. Fluid Mech. 101, 493.CrossRefADSGoogle Scholar
  36. 36.
    Kleis, S.J., Hussain, F. & Sokolov, M. 1981 A ‘turbulent spot’ in an axisymmetric free shear layer. Part 3. Azimuthal structure and initiation mechanism. J. Fluid Mech. 111, 87.CrossRefADSGoogle Scholar
  37. 37.
    Tso, J. & Hussain, F. 1989 Organized motions in a fully developed turbulent jet. J. Fluid Mech. 203, 425.CrossRefADSGoogle Scholar
  38. 38.
    Hussain, F. & Hayakawa, M. 1987 Eduction of large-scale structures in a. turbulent plane wake. J. Fluid Mech. 180, 193.CrossRefADSGoogle Scholar
  39. 39.
    Hayakawa, M. & Hussain, F. 1989 Three-dimensionality of organized structures in a plane turbulent wake. J. Fluid Mech. 206, 375.CrossRefADSGoogle Scholar
  40. 40.
    Metcalfe, R.W., Hussain, F., Menon, S. & Hayakawa, M. 1987 Coherent structures in a turbulent plane mixing layer: a comparison between direct numerical simulations and experiments. Turb. Shear Flows 5, 110.CrossRefGoogle Scholar
  41. 41.
    Hussain, F. & Zaman, K.B.M.Q. 1985 An experimental study of organized motions in the turbulent plane mixing layer. J. Fluid Mech. 159, 85.CrossRefADSGoogle Scholar
  42. 42.
    Hussain, F. 1983 Coherent stuctures and incoherent turbulence. In Turbulence and Chaotic Phenomena in Fluids, (ed T. Tatsumi), p. 453. North-Holland.Google Scholar
  43. 43.
    Metcalfe, R.W., Orszag, S.A., Brachet, M.E., Menon, S. & Riley, J. 1987 Secondary instability of a temporally growing mixing layer. J. Fluid Mech. 184, 207.CrossRefMATHADSGoogle Scholar
  44. 44.
    Breidenthal, R. 1981 Structure in turbulent mixing layers and wakes using a chemical reaction. J. Fluid Mech. 109, 1.CrossRefADSGoogle Scholar
  45. 45.
    Park, K.H., Metcalfe, R.W. & Hussain, F. 1994 Role of coherent structures in an isothermally reacting plane mixing layer. Phys. Fluids 6, 885.CrossRefMATHADSGoogle Scholar
  46. 46.
    Bridges, J.E. & Hussain, F. 1987 Roles of initial condition and vortex pairing in jet noise. J. Sound Vib. 117, 289.CrossRefADSGoogle Scholar
  47. 47.
    Hasan, M.A.Z. & Hussain, F. 1982 The self-excited axisymmetric jet. J. Fluid Mech. 115, 59.CrossRefADSGoogle Scholar
  48. 48.
    Lugt, H.J. 1979 The dilemma of defining a vortex. In Recent Developments in Theoretical and Experimental Fluid Mechanics, p.309. Springer.Google Scholar
  49. 49.
    Bisset, D.K., Antonia, R.A. & Browne, L.W.B. 1990 Spatial organization of large structures in the turbulent far wake of a cylinder. J. Fluid Mech. 218, 439.CrossRefADSGoogle Scholar
  50. 50.
    Jimenez, J., Moin, P., Moser, R. & Keefe, L. 1988 Ejection mechanisms in the sublayer of a turbulent channel. Phys. Fluids 31, 1311.CrossRefADSGoogle Scholar
  51. 51.
    Chong, M.S., Perry, A.E. & Cantwell, B.J. 1990 A general classification of three-dimensional flow field. Phys. Fluids A 2, 765.MathSciNetCrossRefADSGoogle Scholar
  52. 52.
    Hunt, J.C.R., Wray, A.A. & Moin, P. 1988 Eddies, stream, and convergence zones in turbulent flows. Center for Turbulence Research Rep. CTR-S88, p. 193.Google Scholar
  53. 53.
    Truesdell, C. 1953 The Kinematics of Vorticity. Indiana University.Google Scholar
  54. 54.
    Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J Fluid Mech. 285, 69.MathSciNetCrossRefMATHADSGoogle Scholar
  55. 55.
    Shtern, V. & Hussain, F. 1993 Hysteresis in a swirling jet as a model tornado. Phys. Fluids A 5, 2183.MathSciNetCrossRefMATHADSGoogle Scholar
  56. 56.
    Kim, J., Moin, P. & Moser, R.D. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133.CrossRefMATHADSGoogle Scholar
  57. 57.
    Jeong, J. & Hussain, F. 1992 Coherent structure near the wall in a turbulent channel flow. Proc. of Fifth Asian Congress of Fluid Mech., Taejon, Korea.Google Scholar
  58. 58.
    Bogard, D.G. & Tiederman, W.G. 1986 Burst detection with single-point velocity measurement. J. Fluid Mech. 162, 389.CrossRefADSGoogle Scholar
  59. 59.
    Johansson, A.V., Alfredsson, P.H. & Kim, J. 1991 Evolution and dynamics of shear-layer structures in near-wall turbulence. J. Fluid Mech. 224, 579.CrossRefMATHADSGoogle Scholar
  60. 60.
    Jeong, J. 1994 A theoretical and numerical study of coherent structures. PhD dissertation, University of Houston.Google Scholar
  61. 61.
    Tennekes, T. & Lumley, J.L. 1972 A First Course in Turbulence. M.I.T. Press.Google Scholar
  62. 62.
    Kambe, T. & Minota, T. 1983 Acoustic wave radiated by head-on collision of two vortex rings. Proc. R. Soc. Lond. A 386, 277.CrossRefADSGoogle Scholar
  63. 63.
    Stanaway, S., Shariff, K. & Hussain, F. 1988 Head-on collision of vortex rings. Center for Turbulence Research Rep. CTR, S88, 287.Google Scholar
  64. 64.
    Crow, S.C. 1970 Stability theory of a pair of trailing vortices. AIAA J. 8, 2172.CrossRefADSGoogle Scholar
  65. 65.
    Moira, P., Leonard, A. & Kim, J. 1986 Evolution of a curved vortex filament into a vortex ring. Phys. Fluids 29, 955.CrossRefADSGoogle Scholar
  66. 66.
    Schatzle, P.R. 1987 An experimental study of fusion of vortex rings. PhD dissertation, California Institute of Technology.Google Scholar
  67. 67.
    Hussain, F. & Husain, H.S. 1989 Elliptic jets. Part I. Characteristics of unexcited and excited jets. J. Fluid Mech. 208, 257.CrossRefADSGoogle Scholar
  68. 68.
    Zabusky, N.J. & Melander, M.V. 1989 Three-dimensional vortex tube reconnection: morphology for orthogonally-offset tubes. Physica D 37, 555.MathSciNetCrossRefADSGoogle Scholar
  69. 69.
    Kida, S. & Takaoka, M. 1987 Bridging in vortex reconnection. Phys. Fluids 30, 2911.CrossRefADSGoogle Scholar
  70. 70.
    Melander, M.V. & Hussain, F. 1988 Cut-and-connect of two antiparallel vortex tubes. Center for Turbulence Research Rep. CTR-S88, 257.Google Scholar
  71. 71.
    Feiereisen, W., Reynolds, W.C. & Ferziger, J.H. 1981 Numerical simulation of a compressible homogeneous, turbulent shear flow. Stanford U. Report No. TF-13.Google Scholar
  72. 72.
    Passot, T. & Pouquet, A. 1987 Numerical simulation of compressible homogeneous flows in turbulent regime. J. Fluid Mech. 181, 441.CrossRefMATHADSGoogle Scholar
  73. 73.
    Erlebacher, G., Hussaini, M.Y., Kreiss, H. & Sarkar, S. 1990 The analysis and simulation of compressible turbulence. ICASE Rep. No. 90–15.Google Scholar
  74. 74.
    Lee, S., Lele, S.K. & Moin, P. 1991 Eddy shocklets in decaying compressible turbulence. Phys. Fluids A 3, 657.CrossRefADSGoogle Scholar
  75. 75.
    Dosanjh, D.S. & Weeks, T. 1965 Interaction of a starting vortex as well as a vortex street with a traveling shock wave. AIAA J. 3, 216.CrossRefMATHGoogle Scholar
  76. 76.
    Virk, D. & Hussain, F. 1993 Influence of initial conditions on compressible vorticity dynamics. Theoret. Comput. Fluid Dyn. 5, 309.CrossRefMATHADSGoogle Scholar
  77. 77.
    Virk, D., Hussain, F. & Kerr, R. 1995 Compressible vortex reconnection. J. Fluid Mech. (to appear)Google Scholar
  78. 78.
    Melander, M.V. & Hussain, F. 1994 Topological vortex dynamics in axisymmetric viscous flows. J. Fluid Mech. 260, 57.MathSciNetCrossRefADSGoogle Scholar
  79. 79.
    Huang, L.-S. & Ho, C.M. 1990 Small-scale transition in a plane mixing layer. J. Fluid Mech. 210, 475.CrossRefADSGoogle Scholar
  80. 80.
    Moser, R.D. & Rogers, M.M. 1993 The three-dimensional evolution of a plane mixing layer: pairing and transition to turbulence. J. Fluid Mech. 247, 275.CrossRefMATHADSGoogle Scholar
  81. 81.
    Pierrehumbert, R.T. & Widnall, S.E. 1982 The two-and three-dimensional instabilities of a spatially periodic shear lyer. J. Fluid Mech., 114, 59.CrossRefMATHADSGoogle Scholar
  82. 82.
    Clark, A.R. 1979 An experimental investigation of the coherent motions in an axisymmetric mixing layer. PhD dissertation, University of Houston.Google Scholar
  83. 83.
    Lesieur, M. 1990 Turbulence in Fluids, 2nd Edition, Kluwer Academic Publ.Google Scholar
  84. 84.
    Hussain, F. 1983 Coherent stuctures and incoherent turbulence. In Turbulence and Chaotic Phenomena in Fluids, (ed T. Tatsumi), p. 453. North-Holland.Google Scholar
  85. 85.
    Melander, M.V., McWilliams, J.C. & Zabusky, N.J. 1987 Axisymmetrization and vorticity gradient intensification of an isolated two-dimensional vortex through filamentation. J. Fluid Mech. 178, 137.CrossRefMATHADSGoogle Scholar
  86. 86.
    McWilliams, J.C. 1984 The emergence of isolated coherent vortices in turbulent flow. J. Fluid Mech. 146, 21.CrossRefMATHADSGoogle Scholar
  87. 87.
    Melander, M.V. & Hussain, F. 1993 Coupling between a coherent structure and fine-scale turbulence. Phys. Rev. E, 48, 2669.MathSciNetCrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Wien 1996

Authors and Affiliations

  • W. Schoppa
    • 1
  • F. Hussain
    • 1
  1. 1.University of HoustonHoustonUSA

Personalised recommendations