Advertisement

Theory and Practice of Machine Walking

  • F. Pfeiffer
  • Th. Rossmann
  • J. Steuer
Part of the International Centre for Mechanical Sciences book series (CISM, volume 375)

Abstract

In this paper the theory and two examples of machine walking is presented. Part I contents the theory of multi-body dynamics, the kinematics and kinetics of rigid body systems seen at the example of a six-legged roboter and the theory of optimization with constraints. Part II contents two examples of walking robots. First, there is a six-legged walking machine whose kinetics, gait patterns and control system are derived from a stick insect. The second example is a tube-crawling robot with eight legs. It has four legs in the front and four legs in the rear. This construction shall enable it to go through pipes with a diameter between 60 and 70 cm.

Keywords

Stance Phase Central Body Gait Pattern Stick Insect Tripod Gait 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bremer, H.: Dynamik und Regelung mechanischer Systeme, Teubner Verlag, Stuttgart, 1988.CrossRefMATHGoogle Scholar
  2. [2]
    Cruse, H.: The Function of the Legs in the Free Walking Stick Insect, Carausius morosus, Journal of Comparative Physiology, (1976), p. 112.Google Scholar
  3. [3]
    Cruse, H.: What mechanisms coordinate leg movement in walking arthropods ?, Trends in Neurosciences 13, (1990), pp. 15–21.CrossRefGoogle Scholar
  4. [4]
    Cruse, H.; Dean, J.; Müller, U.; Schmitz, J.: The Stick Insect as a Walking Robot, Proc. Fifth Int. Conf. on Adv. Robotics, Robots in unstructured Environment, Pisa, Italy, June 1991, pp. 936–940.CrossRefGoogle Scholar
  5. [5]
    Eltze, J.: Biologisch orientierte Entwicklung einer sechsbeinigen Laufmaschine, no. 110 in Fortschrittsberichte VDI, Reihe 17, VDI-Verlag, Düsseldorf, 1994.Google Scholar
  6. [6]
    Glocker, C.: Dynamik von Starrkörpersystemen mit Reibung und Stößen, Reihe 18, Nr. 182, VDI-Verlag, Düsseldorf, 1995.Google Scholar
  7. [7]
    Glocker, C.; Pfeiffer, F.: Stick-Slip Phenomena and Application, Proc. of Non-linearity and Chaos in Engineering Dynamics, Symposium, I., ed., 1993.Google Scholar
  8. [8]
    Clocker, C.; Pfeiffer, F.: Multiple Impacts wich Friction in Rigid Multibody Systems, Nonlinear Dynamics, Kluwer Academic Publishers, (1996).Google Scholar
  9. [9]
    Graham, D.: A behavioural analysis of the temporal,organisation of walking movements in the 1st instar and adult stick insect (carausius morosus), Journal of Comparative Physilolgy, (1972).Google Scholar
  10. [10]
    Harmonic Drive GmbH: Harmonic Drive Gear Component Sets, HFUC Series, Tech. Rep., Harmonic Drive GmbH, 1993.Google Scholar
  11. [11]
    Herrndobler, M.: Entwicklung eines Rohrkrabblers mit vollständigen Detailkonstruktionen, Master’s thesis, Lehrstuhl B für Mechanik, TU München, 1994.Google Scholar
  12. [12]
    Neubauer, W.: Locomotion with Articulated Legs in Pipes or Ducts, Proc. of the Int. Conf. on Intelligent Autonomous Systems, Pittsburgh, USA, 1993, pp. 64–71.Google Scholar
  13. [13].
    Neubauer, W.: A Spider–Like Robot that Climbes Vertically in Ducts, Proc. of the 1994 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Munich, 1994, pp. 1178–1185.Google Scholar
  14. [14]
    Pfeiffer, F.; Chernousko, F.; Bolotnik, N.; Roßmann, T.; Kostin, G.: Tube-Crawling Robot: Modelling and Optimization. To appear in: IEEE Transactions on Robotics and Automation.Google Scholar
  15. [15]
    Pfeiffer, F.; Cruse, H.: Bionik des Laufens-technische Umsetzung biologischen Wissens, Konstruktion, (1994), pp. 261–266.Google Scholar
  16. [16]
    Pfeiffer, F.; Eltze, J.; Weidemann, H.-J.: Six-legged technical walking considering biological principles, Robotics and Autonomous Systems, (1995), pp. 223–232.Google Scholar
  17. [17]
    Pfeiffer, F.; Eltze, J.; Weidemann, H.-J.: The TUM-Walking Machine, Intelligent Automation and Soft Computing, 1 (1995), pp. 307–323.CrossRefGoogle Scholar
  18. [18]
    Pfeiffer, F.; Roßmann, T.; Chernousko, F. L.; Bolotnik, N.: Optimization of Structural Parameters and Gaits of a Pipe-Crawling Robot, IUTAM Symposium on Optimization of Mechanical Systems, Bestle, D.; Schiehlen, W., eds., Kluwer Academic Publisgers, 1996, pp. 231–238.Google Scholar
  19. [19]
    Pfeiffer, F.; Weidemann, H.-J.; Danowski, P.: Dynamics of the Walking Stick Insect, Proc. of the 1990 IEEE Int. Conf. on Robotics and Automation, Cincinatti, Ohio, May 1990, pp. 1458–1463.Google Scholar
  20. [20]
    Roßmann, T.; Pfeiffer, F.: Contol and Design of a Pipe Crawling Robot, Proc. of the 13th World Congress, of Automatic Control, I. F., ed., San Francisco, USA, 1996.Google Scholar
  21. [21]
    Slotine, J.-J. E.; Li, W.: Applied Nonlinear Control, Prentice Hall, Englewood Cliffs, New Jersey, 1991.Google Scholar
  22. [22]
    Waldron, K.; et al.: Force and Motion Management in Legged Locomotion, IEEE Journal of Robotics an dAutomation, RA-2 (1986).Google Scholar
  23. [23]
    Weidemann, H.-J.: Dynamik und Regelung von sechsbeinigen Robotern und natürlichen Hexapoden, no. 362 in Fortschrittsberichte VDI, Reihe 8, VDI-Verlag, Düsseldorf, 1993.Google Scholar
  24. [24]
    Weidemann, H.-J.; Eltze, J.; Pfeiffer, F.: Leg Design based on Biological Principles, Proc. of the 1993 IEEE Int. Conf. on Robotics and Automation, Atlanta, Georgia, May 1993, pp. 352–358.Google Scholar

Copyright information

© Springer-Verlag Wien 1997

Authors and Affiliations

  • F. Pfeiffer
    • 1
  • Th. Rossmann
    • 1
  • J. Steuer
    • 1
  1. 1.Technical University of MunichMunichGermany

Personalised recommendations