Self-Consistent Modelling of Plastic and Viscoplastic Polycrystalline Materials

  • A. Molinari
Part of the International Centre for Mechanical Sciences book series (CISM, volume 376)


This lecture describes some self-consistent approaches that are used to model the plastic deformation of strain-rate dependent and of rate-independent polycrystalline materials. A discussion is presented of the grain-matrix interaction law, which in most of the approaches appears to be too stiff. Large strain deformations are considered, and the evolution of the crystallographic texture and of the morphology of grains is accounted for to model the development of the overall anisotropy of the polycrystal.


Slip System Strain Rate Sensitivity Finite Element Calculation Inclusion Problem Incremental Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahzi, S, A. Molinari and G.R. Canova: Effects of the grain shape on the texture evolution in polycrystalline materials, in: Yielding, Damage and Failure of Anisotropic Solids (Ed. J.P. Boehler), EGF Publication 5 (1990), 425–441.Google Scholar
  2. Anand, L. and M. Kothari: A computational procedure for rate-independent crystal plasticity, J. Mech. Phys. Solids, 44 (1996), 525–558.CrossRefGoogle Scholar
  3. Asaro, R.J. and J.R. Rice: Strain localization in ductile single crystals, J. Mech. Phys. Solids, 25 (1977), 309–338.CrossRefGoogle Scholar
  4. Asaro, R.J., A. Needleman: Texture development and strain hardening in rate dependent polycrystals, Acta Metall 33 (1985), 923–953.CrossRefGoogle Scholar
  5. Asaro, R.J.: Micromechanics of crystals and polycrystals, Adv. Applied Mech., 23 (1983), 1–115.Google Scholar
  6. Asaro, R.J.: Crystal plasticity, J. Appl. Mech. Trans. ASME, 50 (1983), 921–934.CrossRefGoogle Scholar
  7. Berveiller M. and A. Zaoui: An extension of the self-consistent scheme to plastically-flowing polycrystals. J. Mech. Phys. Solids, 26 (1979), 325–344.CrossRefGoogle Scholar
  8. Budianski, B. and Wu: Theoretical prediction of plastic strains of polycrystals, in Proc. of the 4th U.S. National Congress of Applied Mechanics, ASME (1962), 1175.Google Scholar
  9. Castelnau, O., P. Duval, R.A. Lebensohn and G.R. Canova: Viscoplastic modeling of texture development in polycrystalline ice with a self-consistent approach: comparison with bound estimates, J. Geophys. Res., B6, 101 (1996), 13851–13868.CrossRefGoogle Scholar
  10. Dahoun, A., G.R. Canova, A. Molinari, M.J. Philippe and C. G’Sell: The modeling of large strain textures and stress-strain relations of polyethylene, Textures and Microstructures, 1418 (1991), 347–354.CrossRefGoogle Scholar
  11. Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion,and related problems; Proc. Roy. Soc. London, A241 (1957), 376.CrossRefGoogle Scholar
  12. François, D., A. Pineau and A. Zaoui: Comportement mécanique des matériaux, Vol. 1 (1991), Paris, Hermès.Google Scholar
  13. Gilormini, P., and Y. Germain: Int. J. Solids Struct., 23 (1987), 413.CrossRefGoogle Scholar
  14. Havner, K.S.: Finite deformation of Crystalline Solids. London: Cambridge University Press (1992).CrossRefGoogle Scholar
  15. Hill, R.: Continuum micro-mechanics of elastoplastic polycrystals, J. Mech. Phys. Solids, 13 (1965), 89.CrossRefGoogle Scholar
  16. Hill, R.: Proc. Roy. Soc. London, A 326 (1972), 131–147.CrossRefGoogle Scholar
  17. Hill, R. and J. Rice: Constitutive analysis of elastic-plastic crystals at arbitrary strain, J. Mech. Phys. Solids, 20 (1972), 401–413.CrossRefGoogle Scholar
  18. Honneff, H. and H; Mecking: Proc. 5th Int. Conf. on Textures of Materials, ICOTOM 5 (Ed. G. Gottstein and K. Lücke), Vol. 1 (1978), 265.Google Scholar
  19. Hutchinson, J.W.: Elastic-plastic behavior of polycrystalline metals and composites, Proc. Roy. Soc. London, A319 (1970), 247.CrossRefGoogle Scholar
  20. Hutchinson, J.W.: Bounds and self-consistent estimate for creep of polycrystalline materials, Proc. Roy. Soc., A348 (1976), 101.CrossRefGoogle Scholar
  21. Iwakuma, T. and S. Nemat-Nasser: Finite elastic-plastic deformation of polycrystalline metals, Proc. Roy. Soc. London, A394 (1984), 87–119.CrossRefGoogle Scholar
  22. Kalidindi, S.R., C.A. Bronkhorst and L. Anand: J. Mech. Phys. Solids, 40 (1992), 537.CrossRefGoogle Scholar
  23. Kouddane, R., A. Molinari and G.R. Canova: Self consistent modelling of heterogeneous viscoelastic and elastoviscoplastic materials, in: Large plastic deformations, Fundamentals and application of metal forming (Ed. C. Teodosiu et al.), Balkema (1993), 129–141.Google Scholar
  24. Kröner, E.: Zur plastichen Verformung des Vielkristalls, Acta Metall., 9 (1961), 155.CrossRefGoogle Scholar
  25. Kröner, E.: Bounds for effective elastic moduli of disordered materials, J. Mech. Phys. Solids, 25 (1977), 137–155.CrossRefGoogle Scholar
  26. Lebensohn, R.A. and C.N. Tomé: A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconium alloys, Acta Metall. et Mater., 41 (1993), 2611–2624.CrossRefGoogle Scholar
  27. Lee, E.H.: Elastic-plastic deformation at finite strains, J. Appl. Mech. Trans. ASME, 36 (1969), 1–6.CrossRefGoogle Scholar
  28. Lipinski, P., J. Krier and M. Berveiller: Elastoplasticité des métaux en grandes déformations: comportement global et évolution de la structure interne, Revue Phys. Appl., 25 (1990), 361.Google Scholar
  29. Lipinski, P., A. Naddari and M. Berveiller: Recent results concerning the modelling of polycrystalline plasticity at large strains, Int. J. Solids Structure, 29 (1992), 1873–1881.CrossRefGoogle Scholar
  30. Mandel, J.: Thermodynamics and Plasticity, Proc. of the International Symposium on Foundations of Continuum Thermodynamics (Ed. Delgado Domingos, J.J.; Nina, M.N.R.; Whitelaw, J.H.), pp 283–311. London: Mc Millan Publ.Google Scholar
  31. Molinari, A., G.R. Canova and S. Ahzi: A self-consistent approach of the large deformation polycrystal viscoplasticity, Acta Metall., 35 (1987), 2983–2994.CrossRefGoogle Scholar
  32. Molinari, A., and L. Toth: Tuning a self-consistent viscoplastic model by finite element results I: Modeling, Acta Metall. Mater., 42 (1994), 2453–2458.Google Scholar
  33. Molinari, A., S. Ahzi and R. Kouddane: On the self-consistent modeling of elastic-plastic behavior of polycrystals, Mech. of Materials (1997) to appear.Google Scholar
  34. Nemat-Nasser, S.: Int. J. Solids Struct., 18 (1982), 857–872.CrossRefGoogle Scholar
  35. Nemat-Nasser, S. and M. Obata: Rate-dependent, finite elasto-plastic deformation of polycrystals, Proc. Roy. Soc. London, A407 (1986), 343.CrossRefGoogle Scholar
  36. Rice, J.R.: Inelastic constitutive relations for solids: an internal variable theory and its application to metal plasticity, J. Mech. Phys. Solids, 19 (1971), 433–455.CrossRefGoogle Scholar
  37. Rougier, Y., C. Stolz and A. Zaoui: Self-consistent modelling of elastic-viscoplastic polycrystals, C.R. Acad. Sci. Paris, 318, Série II (1994), 145–151.Google Scholar
  38. Takeshita, T., H.R. Wenk, G.R. Canova and A. Molinari: Simulation of dislocation assisted plastic deformation in olivine polycrystals, in: Deformation processes in minerals, ceramics and rocks (Ed. D.J. Barker and P.G. Meredith) Unwin Hyman (1990), 365–374.CrossRefGoogle Scholar
  39. Taylor, G.I. and C.F. Elam: Proc. R. Soc. Lond. A102 (1923), 643. Taylor, G.I. and C.F. Elam: Proc. R. Soc. Lond. A108 (1925), 28. Taylor, G.I.: Plastic strain in metals, J. Inst. Metals, 62 (1938), 307–324.Google Scholar
  40. Teodosiu, C.: A dynamical theory of dislocations and its applications to the theory of the elastic-plastic continuum, Proc. Int. Conf. Fundamental Aspects of Dislocation Theory, Washington, 1969 (Eds. J.A. Simmons, R. de Wit, R. Bullough), Nat. Bur. Stand. Spec. Publ. 317 (1970), 837–876.Google Scholar
  41. Tomé, C.N., R.A. Lebensohn and U.F. Kocks: A model for texture development dominated by deformation twinning: application to zirconium alloys, Acta metall. mater., 39 (1991), 2667–2680.CrossRefGoogle Scholar
  42. Toth, L.S., J.J. Jonas, D. Daniel and J.A. Bailey: Text. Microstructures, 19 (1992), 245.CrossRefGoogle Scholar
  43. Toth, L. and A. Molinari: Tuning a self-consistent viscoplastic model by finite element results I I: Application to torsion textures, Acta metall. mater., 42 (1994), 2459–2466.CrossRefGoogle Scholar
  44. Van Houtte, P.: Acta metall., 26 (1978), 591.CrossRefGoogle Scholar
  45. Wagner, F., G.R. Canova, P. Van Houtte and A. Molinari: Comparison of simulated and experimental deformation textures for BCC metals, Textures and Microstructures, 14–18 (1991), 1135–1140.CrossRefGoogle Scholar
  46. Weng, G.J.: Self-consistent determination of time-dependent behavior of metals, J. of Applied Mech., 48 (1981), 41–46.CrossRefGoogle Scholar
  47. Wenk, H.R., G.R. Canova, A. Molinari and H. Mecking: Texture development in halite: comparison of Taylor model and self-consistent theory, Acta metall., 37 (1989), 2017–2029.CrossRefGoogle Scholar
  48. Wenk, H.R., K. Bennett, G.R. Canova and A. Molinari: Modelling plastic deformation of Peridotite with the self-consistent theory, J. Geophys. Res., 96, B5 (1991), 8337–8349.Google Scholar
  49. Zaoui, A.: Matériaux hétérogènes et composites (1996), Ecole Polytechnique, Paris.Google Scholar

Copyright information

© Springer-Verlag Wien 1997

Authors and Affiliations

  • A. Molinari
    • 1
  1. 1.LPMM-CNRSUniversity of MetzMetzFrance

Personalised recommendations