Experimental Aspects of Crystal Plasticity

  • H. P. Stüwe
Part of the International Centre for Mechanical Sciences book series (CISM, volume 376)


This chapter attempts to show the connection between the atomistic processes that determine the stress-strain curves of metals and the phenomenological description proposed for such curves


Flow Stress Slip System Burger Vector Slip Plane Stack Fault Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schmid, E. und W. Boas: Kristallplastizität, Springer, Berlin 1935.Google Scholar
  2. 2.
    Taylor, G.J.: Plastic strain in metals, J. Inst. Met., 62 (1938) 307–324.Google Scholar
  3. 3.
    van Houtte, P. and E. Aernoudth: Solution of the generalized Taylor theory of plastic flow, Z. Metallk., 66 (1975) 202–209.Google Scholar
  4. 4.
    Toth, L.S., P. Gilormini and J.J. Jonas: Effect of rate sensitivity on the stability of torsion textures, Acta Met., 36 (1988) 3077–2091.CrossRefGoogle Scholar
  5. 5.
    Hall, E.O.: The deformation and ageing of mild steel Ill: discussion of results, Proc. Phys. Soc., B64 (1951) 747–753 and Petch, N.J.: The cleavage strength of polycrystals, J. Iron Steel Inst., 174 (1953) 25–28.Google Scholar
  6. 6.
    Werner, E. and H.P. Stüwe: Phase boundaries as obstacles to dislocation motion, Mater. Sci. Engng, 68 (1984) 175–182.CrossRefGoogle Scholar
  7. 7.
    Ludwik, P.: Elemente der technologischen Mechanik, Berlin 1909.Google Scholar
  8. 8.
    Voce, E.: The relationship between stress and strain for homogeneous deformation, Journ. Inst. Met., 74 (1948) 537–562, see also 760–771.Google Scholar
  9. 9.
    Kocks, U.F., A.S. Argon and M.F. Ashby: Thermodynamics and Kinetics of Slip, in: Progress in Material Science, London, Pergamon Press 1975.Google Scholar
  10. 10.
    Stüwe, H.P.: Die Fließkurven vielkristalliner Metalle und ihre Anwendung in der Plastizitätsmechanik, Z. Metallk. 56, (1965) 633–642.Google Scholar
  11. 11.
    Zehetbauer, M.: Cold work hardening in stages IV and V of fcc metals — II Model fits and physical results, Acta metall. mater. Vol. 41, (1993) 589–599.CrossRefGoogle Scholar
  12. 12.
    Stüwe, H.P.: Dynamische Erholung bei der Warmverformung, Acta Met. 13, (1965) 1337–1342.CrossRefGoogle Scholar
  13. 13.
    Kuhlmann-Wilsdorf, D.: Theory of plastic deformation-properties of low energy dislocaiton structures, Mater. Sci. Engng, A 113, (1989) 1–41.CrossRefGoogle Scholar
  14. 14.
    Mughrabi, H., T. Ungar, W. Kienzle and M. Wilkens: Long range internal stresses and asymmetric X-ray line broadening in tensile-deformed [001]-oriented copper singly crystals, Phil. Mag. A53, (1986) 793–813.CrossRefGoogle Scholar
  15. 15.
    Jonas, J.J., C.M. Sellars and W.J. McTegart G.: Strength and structure under hot working conditions, Metallurgical Reviews 14, (1969), 1–24.CrossRefGoogle Scholar
  16. 16.
    Mecking, H., U.F. Kocks and Ch. Hartig: Taylor factors in materials with many deformation modes, Scripta materialia 35, (1996) 465–417.CrossRefGoogle Scholar
  17. 17.
    Frost, H.J. and M.F. Ashby: Deformation Mechanism Maps, Pergamon Press, (1982).Google Scholar
  18. 18.
    Pink, E., R. Kutschej and H.P. Stüwe: Evidence for lattice-controlled diffusion in a Sn-Pb-eutectic, Scripta Met. 15, (1981), 185–189.CrossRefGoogle Scholar
  19. 19.
    Stüwe, H.P.: Fließspannung und Verformungsgeschwindigkeit beim Strangpressen, Z. Metallk. 62, (1971) 697–701.Google Scholar

Copyright information

© Springer-Verlag Wien 1997

Authors and Affiliations

  • H. P. Stüwe
    • 1
  1. 1.Austrian Academy of SciencesLeobenAustria

Personalised recommendations