Data Analysis in Industry

A Practical Guideline
  • H. Hellendoorn
Conference paper
Part of the International Centre for Mechanical Sciences book series (CISM, volume 382)


We present a methodology for data, mining in large industrial data. sets. We show the most important steps in the process of extracting information out of the data: (1) Preprocessing the data, (2) Reducing the data, (3) Modeling the data, (4) Rule extraction, and (5) Drift analysis. We also show some examples of industrial applications where fuzzy logic based data analysis plays a role.


Radial Basis Function Fuzzy System Fuzzy Rule Polynomial Regression Fuzzy Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ader, W. and A. Nrling: Extraktion von Fuzzy-Regeln zur Analyse technischer Prozesse, MSc-thesis, Munich, 1995.Google Scholar
  2. [2]
    Babuška, R.: Fuzzy Modeling and Identification, PhD-thesis, Delft, 1996.Google Scholar
  3. [3]
    Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms, New York, Plenum Press, 19S1.Google Scholar
  4. [4]
    Driankov, D., H. Hellendoorn and M. Reinfrank: An Introduction to Fuzzy Control, Heidelberg, Springer Verlag, 1993.Google Scholar
  5. [5]
    Duda, R. and P. Hart: Pattern Classification and Scene Analysis, New York, Wiley, 1973.zbMATHGoogle Scholar
  6. [6]
    Hellendoorn, H. and R. Palm: Fuzzy Systems at Siemens RD, Fuzzy Sets and Systems, 63(1994)245–269.Google Scholar
  7. [7]
    Hellendoorn, H. and R. Baudrexl: Fuzzy-Neural Traffic Control and Forecasting, Proc. of the FUZZ-IEEE/IFES’95 Conference, Yokohama, 1995, pp. 2187–2194.Google Scholar
  8. [8]
    Kohonen, T.: Self-organized Formation of Topologically Correct Feature Maps, Biological Cybernetics, 43(1982)59–69.Google Scholar
  9. [9]
    Martinetz, T. and J. Hollatz: Neuro-Fuzzy in der Prozeßautomatisierung, Neuro-Fuzzy — Grundlagen und Anwendungen in der industriellen Automatisierung, (Ed. K.W. Bonfig ), Renningen-Malmsheim, expert verlag, 1995, pp. 135–144.Google Scholar
  10. [10]
    Palm, R., D. Driaiikov, and H. Hellendoorn: Model Based Fuzzy Control, Heidelberg, Springer Verlag, 1997.CrossRefzbMATHGoogle Scholar
  11. [11]
    Runkler, T.: Iterative c-Elliptotype Clustering for Efficient Data Analysis, Workshop Fuzzy-Neuro-Systeme (Ed. R. Isermann ), Darmstadt, 1995.Google Scholar

Copyright information

© Springer-Verlag Wien 1997

Authors and Affiliations

  • H. Hellendoorn
    • 1
  1. 1.Siemens AGMunichGermany

Personalised recommendations