Adaptive Market Simulation and Risk Assessment

  • R. A. Müller
Conference paper
Part of the International Centre for Mechanical Sciences book series (CISM, volume 382)


Quantitative Reasoning (QR) is a powerful method for simulation and risk assessment. QR and applications are presented, allowing the representation of market and company structures (demand and supply side, prices, values, resources, budgets, ...), dynamics (growth, structural changes, ...), interdependencies (e. g. between market and company related factors). The appoach provides the following features to end users:
  • calculating, simulating without programming,

  • revealing hidden side effects, if-then analysis,

  • checking complex plans and forecasts for consistency,

  • accounting for risks and uncertainties (calculating with interval numbers),

  • incorporating rich and heterogeneous market expertise,

  • providing reliable results,

  • adaptivity related to new information (Bayesian inference),

  • supporting cooperative work.

  • One of the most important examples constructed with QR currently in practice is a planning support tool called GVE. It was built by Daimler-Benz Research for the Mercedes-Benz (MB) marketing department. GVE, the German acronym for the European Commercial Transportation Market, models MB’s business opportunities and risks as determined by the behavior and structural changes of the overall market.


State Space Model Semantical Network Interval Number Object Variable Marketing Department 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kalman, R.E.: A New Approach to Linear Filtering and Prediction Problems, in: Journal of Basic Engineering, March 1960, 35–45.Google Scholar
  2. 2.
    Jazwinsky, A.H.: Stochastic Processes and Filtering Theory, Academic Press, New York 1970.Google Scholar
  3. 3.
    Kruse, R. Siegel,P. (eds.): Symbolic and Quantitative Approaches to Uncertainty. Proceedings of the European Conference ECSQAU, Marseille, France, October 1517, 1991, Berlin (Springer) 1991.Google Scholar
  4. 4.
    Kruse, R. Gebhardt, J. Klawonn, F.: Modellierung von Vagheit und Unsicherheit, Fuzzy Logik und andere Kalküle, in: Künstliche Intelligenz 4, 1991, 13–17.Google Scholar
  5. 5.
    Zadeh, L.: Fuzzy Sets. Information and Control. 8, 338–353, 1965.CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Shafer, G.: A Mathematical Theory of Evidence. Princeton NJ (Princeton University Press) 1976.Google Scholar
  7. 7.
    Skala, H.J. Termini, S. Trillas, E. (eds.): Aspects of Vagueness. Dordrecht (Reidel) 1984.Google Scholar
  8. 8.
    Goodman, I.R. Nguyen, H.T.: Uncertainty Models for Knowledge-Based Systems, A Unified Approach to the Measurement of Uncertainty, Amsterdam (North Holland ) 1985.MATHGoogle Scholar
  9. 9.
    Kanal, L.N. Lemmer, J.F. (eds.): Uncertainty in Artificial Intelligence, Amsterdam (North Holland) 1986.Google Scholar
  10. 10.
    Furstenberg, G. von: Acting under Uncertainty, Multidisciplinary Conceptions, Boston (Kluwer) 1990.Google Scholar
  11. 11.
    Aoki,M.: Optimal Control and System Theory, in: Dynamic Economic Analysis, New York 1976.Google Scholar
  12. 12.
    Harrison,P.J. Stevens, C.F.: Bayesian Forecasting. J.Roy.Stat.Soc. B 38, 1976, 205–247.MATHMathSciNetGoogle Scholar
  13. 13.
    Schmid, B.: Bilanzmodelle, Simulationsverfahren zur Verarbeitung unscharfer Teilinformationen. Bericht des ORL-Instituts der ETH Nr. 40, Zürich 1979.Google Scholar
  14. 14.
    Huber, H. Schmid, B.: Perspektiven des Energiewesens in der Schweiz und räumliche Konsequenzen. Zürich 1984.Google Scholar
  15. 15.
    Kyburz, R. Schmid, B.: Accounting Models - A New Tool in Forecasting, Studienunterlagen zur Orts-, Regional-und Landesplanung Nr. 40. ORL-Institut, ETH Zürich 1979.Google Scholar
  16. 16.
    Muller, R. A. Reske, J. Minx, E.P.W.: Eine Zukunfisanalyse der Ausstattung privater Haushalte mit PKW in der Bundesrepublik Deutschland bis zum Jahre 2010, in: Daimler-Benz-AG (Hrsg.): Langfristprognosen - Zahlenspielerei oder Hilfsmittel für die Planung? Referate des 6.Daimler-Benz-Seminars der Forschungsgruppe Berlin vom 15. und 16.11.1984, Report Nr.5 der Schriftenreihe der DBAG. Dusseldorf (VDl-Verlag) 1985.Google Scholar
  17. 17.
    Leuthardt, H. Günther, R.: Mit dem PC auf der Spur von Schwachstellen im Verkehrsbetrieb. Rechnergestütztes Verfahren zur Wirtschaftlichkeitsuntersuchung, in: Der Nahverkehr, Heft 3 1989.Google Scholar
  18. 18.
    Zadeh, L. Desoer,C.A.: Linear System Theory. New York (McGraw Hill ) 1963.Google Scholar
  19. 19.
    Schmid, B.(ed.): Information on Complex Systems - Representation and Inference. Five Papers Presented at the 4th International Symposium on Forecasting, London 1984. Zürich (Verlag der Fachvereine) 1988.Google Scholar
  20. 20.
    Schmid, B.: Darstellung und automatische Auswertung quantitativer Information. Arbeitsbericht des Instituts für Wirtschaftsinformatik (IWI) der Hochschule St. Gallen. St. Gallen 1992.Google Scholar

Copyright information

© Springer-Verlag Wien 1997

Authors and Affiliations

  • R. A. Müller
    • 1
  1. 1.Daimler-Benz AGBerlinGermany

Personalised recommendations