Fractals and Porous Media

From Pore to Geological Scales
  • R. Lenormand
Part of the International Centre for Mechanical Sciences book series (CISM, volume 378)


Modeling of fluid flow through porous media presents three main properties: very large range of length scales, strong heterogeneity and, in some cases, flow instability. All these properties can be studied using a fractal approach and statistical physics. The purpose of this course is to illustrate this approach for various kinds of fluid displacements.
  1. 1)

    The internal surface of rocks is very rough due to mineralization and dissolution (diagenesis). This surface can be modeled using fractal geometry and different techniques are used to measure the surface fractal dimension.

  2. 2)

    For heterogeneous media, permeability can be calculated using effective medium theory or renormalization.

  3. 3)

    Displacements in porous media subject to an instability such as viscous fingering and matrix etching can be described by a statistical process called DLA.

  4. 4)

    Immiscible displacements are controlled by capillary effects. The displacement of a wetting fluid by a nonwetting fluid is described by invasion percolation. The reverse process is more complicated and depend upon pore size and topology. One of the mechanism leads to stable displacements related to crystal growth.

  5. 5)

    Spreading of a tracer depends strongly of the scale of observation. At large scale, spreading is controlled by permeability heterogeneities. In some cases, the transport equation may involve fractional derivatives.

  6. 6)

    Multifractal is a useful tool for describing heterogeneity and correlation of the permeability field. A method for constructing a multifractal field is presented and the difference between fractal and multifractal is explained.



Porous Medium Fractal Dimension Capillary Pressure Fractional Derivative Percolation Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Katz, A.J. and A. H. Thompson, Fractal sandstones: Implications for Conductivity and Pore formation, Phys. Rev. Lett., 54, 12, (1985), 1325–1328.CrossRefGoogle Scholar
  2. 2.
    Hansen, J. P. and Skjeltorp, A.T., Physical Review B, 38, 4, (1988), 2635–2638.CrossRefGoogle Scholar
  3. 3.
    Wong, Po-zen, The statistical physics of sedimentary rocks, Physics Today, (1988), december.Google Scholar
  4. 4.
    Avnir, D, Farin, D. and Pfeifer, P., Chemistry in noninteger dimensions between two and three. II. Fractal surfaces of adsorbent., J. Chem. Phys. 79,7, (1983), 3566–3571.Google Scholar
  5. 5.
    Avnir, D., The fractal Approach to Heterogeneous Chemistry, John Wiley & Sons, New York 1989Google Scholar
  6. 6.
    De Gennes P. G., Partial Filling of a fractal structure by a wetting fluid, in Physics of disordered materials, ed by Adler, H. Friszsche and S. Ovshinsky, Plenum Pub. Corp. (1985)Google Scholar
  7. 7.
    Lenormand, R., Gravity assisted inert gas injection: micromodel experiments and model based on fractal roughness, in “The European Oil and Gas Conference”, edited by Imarisio, G., Frias, M. and Bemtgen, J.M., Graham and Trotman, 1990Google Scholar
  8. 8.
    Davis, H. T., On the Fractal Character of the porosity of natural sandstone, Europhysics Lett., 8 (7), (1989), 629–632.CrossRefGoogle Scholar
  9. 9.
    Melrose, Evaluation of the high speed centrifuge technique for determining capillary pressure at low wetting phase saturation, paper 20597 of the Society of Petroleum Engineers, (1990)Google Scholar
  10. 10.
    PingPing S., Kewin L. and Fenshu J., Quantitative description of the heterogeneity of pore structure by using mercury capillary curves, Paper 29996 of the Society of Petroleum Engineers, 1995Google Scholar
  11. 11.
    Kirkpatrick, S., Percolation and Conduction, Review of Modern Physics, 45, 4, (1973), 574–588.CrossRefGoogle Scholar
  12. 12.
    King, P., The use of Renormalization for Calculating Effective Pemeabilities, Transport in Porous Media, 4, (1989), 37–58.CrossRefGoogle Scholar
  13. 13.
    Noetinger, The Effective Permeability of a Heterogeneous Porous Medium, transp. Porosu Media, vol. 15, (1994), 99–127.CrossRefGoogle Scholar
  14. 14.
    Charlaix, E., Guyon, E. and Roux, S., Permeability of a random array of fractures of widely varying apertures, Transport in Porous Media, 2, (1987), 31–43.CrossRefGoogle Scholar
  15. 15.
    Lenormand, R., Visualization techniques in porous media, in Hydrodynamics of dispersed media, ed. Hulin, Elsevier Science Publishers (North Holland), 1990Google Scholar
  16. 16.
    Daccord G. and Lenormand R. Fractal Patterns from Chemical Dissolution, Nature, vol 325, (1987), 41–43.CrossRefGoogle Scholar
  17. 17.
    Daccord G., Lenormand R. and Lietard O.,Chemical Dissolution of a Porous medium by a Reactive Fluid. 1–Model for the “Wormholing” phenomenon, Chemical Eng. Science, vol 48, (1993), pp 169–178CrossRefGoogle Scholar
  18. 18.
    Daccord G., Lietard O. and Lenormand R., Chemical Dissolution of a Porous medium by a Reactive Fluid. 2 - Convection vs Reaction, Behavior diagram, Chemical Eng. Science, vol 48, (1993), pp 179–186.CrossRefGoogle Scholar
  19. 19.
    Daccord G., Touboul E. and Lenormand R., Carbonate acidizing: a quantitative study of the wormholing phenomenon, paper SPE 16887, presented at the 62st annual conference, Dallas, Texas, Sept. 27–30, 1987.Google Scholar
  20. 20.
    Witten, T. A and Sander, L.M., Diffusion Limited Aggregation, a kinetic critical phenomenon, Phys. Rev. Lett., vol 47, (1981), 1400–1403.Google Scholar
  21. 21.
    Lenormand R., Soucemarianadin A., Touboul E, Daccord G. 3dimensional fractals: experimental measurements using capillary effects, Physical Review A, vol. 36, (1987).Google Scholar
  22. 22.
    Dullien, F., Porous Media, Fluid transport and Pore Structure, Academic Press. 1992Google Scholar
  23. 23.
    Bonnet J. and Lenormand R., Réalisation de micromodèles pour l’étude des écoulements polyphasiques en milieu poreux. Rev. Institut Français du Pétrole, vol 42, 3, (1977), 477–480, (in French).CrossRefGoogle Scholar
  24. 24.
    Lenormand, R. Visualization techniques in porous media, in Hydrodynamics of dispersed media, J.P. Hulin, A.M. Cazabat, E. Guyon, F. Carmona (eds), Elsevier Science Publishers B.V. ( North-Holland ), 1990.Google Scholar
  25. 25.
    Rothman, D.H, and Keller, J.M Immiscible cellular-automaton fluids, J. Stat. Phys., vol. 52, (1988), p. 1119–1127.CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Lenormand R., Zarcone C. and Sarr A., Mechanisms of the displacement of one fluid by another in a network of capillary ducts. J. Fluid Mech., 135, (1983), 337–353.CrossRefGoogle Scholar
  27. 27.
    Lenormand R. and Bories S., Description d’un mécanisme de connexion de liaisons destiné à l’étude du drainage avec piégeage en milieu poreux. (In French). C.R. Acad. Sci. Paris, 291, (1980), 393–396.Google Scholar
  28. 28.
    Feder, J. and Jossang T., Fractal Patterns in Porous Media Flow. Modeling of Laboratory Experiments, Fractals in Petroleum Geology and Earth Processes, edited by Plenum Press, New York, 1995.Google Scholar
  29. 29.
    Wilkinson D. and Willemsen J., J. Pointe, Phys. A 16, (1983), 3365CrossRefMathSciNetGoogle Scholar
  30. 30.
    Lenormand R. and Zarcone C. C. C. Barton and P.R. La Invasion Percolation in an Etched Network: Measurement of a Fractal Dimension, Phys. Rev. Let., vol 54, (1985), 2226–2229.CrossRefGoogle Scholar
  31. 31.
    Lenormand, R. and C. Zarcone, Role of roughness and edges during imbibition in square capillaries. SPE. paper 13264, presented for the SPE Annual Technical Conference and Exhibition, Houston (Texas), Sept 16–19, 1984.Google Scholar
  32. 32.
    Lenormand R., Simulation de l’Imbibition en utilisant un reseau Dual, C.R. Acad. Sci. Paris, 297, (1983), 437–440, (in French).Google Scholar
  33. 33.
    Lenormand R.,Liquids in Porous Media, J. Phys: Condens. Matter vol. 2 (1990) SA79–SA88.Google Scholar
  34. 34.
    Lenormand, R., C. Zarcone, Growth of clusters during imbibition in a network of capillaries, in: Kinetics of Aggregation and Gelation, Edited by Landau D.P. and Family F., Elsevier Science Publishers, 1984Google Scholar
  35. 35.
    Chen G., Taniguchi, M. and Neuman S.P.An Overview of Instability and Fingering during Immiscible Fluid Flow in Porous and Fractured Mesia. Report NUREG/CR-6308.Google Scholar
  36. 36.
    Lenormand R., Touboul E. and Zarcone C., Numerical models and experiments on immiscible displacements in porous media. Journal of Fluid Mechanics., vol. 189, (1988), pp. 165–189CrossRefGoogle Scholar
  37. 37.
    Lenormand R.,Flow through porous media: limits of fractal patterns, Proc. Roy. Soc. Lond. A vol. 423, (1989), 159–168Google Scholar
  38. 38.
    Maloy, K.J, Feder J., Boger, F and Jossang T., Fractal structure of hydrodynamic dispersion in porous media, Phys. Rev. Lett., vol 61, (1988), 2925–2928CrossRefGoogle Scholar
  39. 39.
    Feder, J., 1988, Fractals, Plenum Publishing Corporation.Google Scholar
  40. 40.
    Matheron, G. and De Marsily, G., Is transport in porous media always diffusive? a counterexample, Water Resour. Res., 16, (1980), 901–917.CrossRefGoogle Scholar
  41. 41.
    Bouchaud, J. P., Georges, A., Koplik, J., Provata, A. and Redner, S., Supperdiffusion in random velocity fields, Phys. Rev. Lett., 64, (1990), 2503–2506.CrossRefGoogle Scholar
  42. 42.
    De Gennes, P. G., Hydrodynamic dispersion in unsaturated porous media, J. Fluid Mech., 136, (1983), 189–200.CrossRefMATHGoogle Scholar
  43. 43.
    Wheatcraft, S. W. and Tyler, S. W., An explanation of scale-dependent dispersivity in heterogeneous aquifers using concepts of fractal geometry, Water Resour. Res., 24, (1988), 566–578.CrossRefGoogle Scholar
  44. 44.
    Ababou, R. and Gelhar, L. W., Self-similar randomness and spectral conditioning: analysis of scale effects in subsurface hydrology, in Dynamics of Fluids in Hierarchical Porous Media, edited by J. H. Cushman, 393–428, 1990Google Scholar
  45. 45.
    Emanuel, A.S., Alameda, G. K., Behrens, R. A. and Hewett, T. A., Reservoir performance prediction methods based on fractal geostatistics, paper 16971, Soc. Petrol. Eng.Google Scholar
  46. 46.
    Glimm, J. and Lindquist, W. B., A theory of fluid mixing, report SUNYSB-AMS-92–09, 1992Google Scholar
  47. 47.
    Lenormand, R., A stream tube model for immiscible flow. Part 1: macrodispersion in random porous media, Transport in Porous Media, vol. 18, (1995), 245–261CrossRefGoogle Scholar
  48. 48.
    Lenormand, R., Wang B., A stream tube model for immiscible flow. Part 2: macrodispersion in porous media with long range correlations, Transport in Porous Media, vol. 18, (1995), 262–282Google Scholar
  49. 49.
    Gelhar, L. W. and Axness, C. L., Three-dimensional stochastic analysis of macrodispersion in aquifers, Water Resour. Res.,19, (1983), 161–180.CrossRefGoogle Scholar
  50. 50.
    Klafter, J., Blumen, A. and Shlesinger, M. F., Stochastic pathway to anomalous diffusion, Phys. Rew. A, 35, (1987), 3081–3083.CrossRefMathSciNetGoogle Scholar
  51. 51.
    Lenormand, R., Use of fractional derivative for fluid flow in heterogeneous media. in the Proceeding of the 3rd European Conference on Mathematics of Oil Recovery, Delft, 1992Google Scholar
  52. 52.
    Bagley, R. L. and Torvik, P. J., On the fractional calculus model of viscoelastic behavior, J. of Rheology, 30, (1986), 133–155.CrossRefMATHGoogle Scholar
  53. 53.
    Oldham, K. B. and Spanier, J., The fractional calculus, Academic Press, London, 1974MATHGoogle Scholar
  54. 54.
    Journel, A. G. and Huijbregts, Ch. J., Mining Geostatistics Academic Press, London, 1978Google Scholar
  55. 55.
    Hewett, T. A., “Fractal distribution of reservoir heterogeneity and their influence on fluid transport”, Soc. Petr. Engin., paper 15386, 1986.Google Scholar
  56. 56.
    Emanuel, A.S., Alameda, G.K., Behrens, R.A. and Hewett, T.A., “Reservoir performance prediction methods based on fractal geostatistics, SPERE, (1989),.pp. 311–318Google Scholar
  57. 57.
    Voss, R.R., “random fractal forgeries”, Proc. NATO A.S.I. Fundamentals Algorithms in Computer Graphics, Ilkley, (1985), pp. 119Google Scholar
  58. 58.
    Wheatcraft, S.W. and Tyler, S.W., “An explanation of scale-dependent dispersivity in heterogeneous aquifers using concepts of fractal geometry”, Water Res. Res., vol. 24, (1988), pp. 566–578CrossRefGoogle Scholar
  59. 59.
    Mandelbrot, B. B., Multifractal measures, especially for the geophysicists, PAGEOPH, 131, (1989), 42.CrossRefMathSciNetGoogle Scholar
  60. 60.
    De Argangelis, L., Redner, S and Coniglio, A., “Aomalous voltage distribution of random resistor networks and a new model for the backbone at the percolation threshold”, Phys.,Rev. B, vol. 31, (1985), pp. 4725–4727.CrossRefGoogle Scholar
  61. 61.
    Saucier, 1991, Effective permeability of multifractal porous media, Physica A, (1983), 381–397.Google Scholar
  62. 62.
    Hansen, J. P. and Skjeltorp, A.T., “Fractal pore space and rock permeability implications”, Phys. Rev. B, vol. 38, (1988), pp. 2635–2638CrossRefGoogle Scholar
  63. 63.
    Lenormand, R., Kalaydjian, F., Bieber, M.T, and Lombard, J.M., “Use of a multifractal approach for multiphase flow in heterogeneous porous media: comparison with cat-scanning experiments”, Soc. Petr. Eng., paper 20475, 1990.Google Scholar
  64. 64.
    Meakin, P., “Diffusion limited aggregation on multifractal lattices: a model for fluid-fluid displacement in porous media”, Phys. Rev. A, vol. 36, (1987), pp. 2833–2837CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1997

Authors and Affiliations

  • R. Lenormand
    • 1
  1. 1.Institut Français du PétroleRueil-MalmaisonFrance

Personalised recommendations