Skip to main content

Self-Similarity and Fractality in Microcrack Coalescence and Solid Rupture

  • Chapter
Fractals and Fractional Calculus in Continuum Mechanics

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 378))

  • 984 Accesses

Abstract

Fractal concepts are used to study the complex shapes of fracture surfaces, as well as damage phenomena presenting statistical characteristics. While at the beginning of the loading process the microcracks can be considered as two-dimensional surfaces, as the load is increased the microcracks grow, coalesce and form an invasive fractal set with a dimension larger than two. When the evolving dimension assumes the notable value of 2.5, the microcrack set may be considered as extremely disordered, and percolation of the cracks is very likely, in particular for sufficiently large specimens. Percolation favours catastrophic and brittle behaviours and produces fracture surfaces of a Brownian character, where the local dimension is again 2.5. An additional assumption is that of considering material resisting sections at peak stress as lacunar fractals of a local dimension equal to 1.5. The above-mentioned fractalities produce the well-known scale dependence of fracture energy and tensile strength, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mandelbrot, B.B.: The Fractal Geometry of Nature, W.H. Freeman and Company, New York 1982.

    Google Scholar 

  2. Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications, John Wiley & Sons, Chichester 1990.

    Google Scholar 

  3. Feder, J.: Fractals, Plenum Press, New York 1988.

    Book  MATH  Google Scholar 

  4. Mandelbrot, B.B., Passoja, D.E. and A.J. Paullay: Fractal character of fracture surfaces of metals, Nature, 308 (1984), 721–722.

    Article  Google Scholar 

  5. Saouma, V.E., Barton, C.C. and N.A. Gamaleldin: Fractal characterization of fracture surfaces in concrete, Engineering Fracture Mechanics, 35 (1990), 47–53.

    Article  Google Scholar 

  6. Carpinteri, A.: Mechanical Damage and Crack Growth in Concrete: Plastic Collapse to Brittle Fracture, Martinus Nijhoff Publishers, Dordrecht 1986:

    Google Scholar 

  7. Carpinteri, A.: Decrease of apparent tensile and bending strength with specimen size: two different explanations based on fracture mechanics, Int. J. of Solids and Structures, 25 (1989), 407–429.

    Article  Google Scholar 

  8. Carpinteri, A.: Fractal nature of material microstructure and size effects on apparent mechanical properties, Mechanics of Materials, 18 (1994), 89–101; LFM Internal Report No. 1/92, Politecnico di Torino, October 1992.

    Google Scholar 

  9. Carpinteri, A.: Scaling laws and renormalization groups for strength and toughness of disordered materials, International Journal of Solids and Structures, 31 (1994), 291–302.

    Article  MATH  Google Scholar 

  10. Carpinteri, A.: Size-Scale Effects in the Failure Mechanisms of Materials and Structures, E. & F.N. Spon, London 1996.

    Google Scholar 

  11. Carpinteri, A.: Static and energetic fracture parameters for rocks and concretes, Materials & Structures, 14 (1981), 151–162.

    Google Scholar 

  12. Carpinteri, A.: Notch sensitivity in fracture testing of aggregative materials, Engineering Fracture Mechanics, 16 (1982), 467–481.

    Article  Google Scholar 

  13. Carpinteri, A.: Interpretation of the Griffith instability as a bifurcation of the global equilibrium, in: Applications of Fracture Mechanics to Cementitious Composites (Ed. S.P. Shah ), Martinus Nijhoff Publishers, Dordrecht 1985, 287–316.

    Chapter  Google Scholar 

  14. Carpinteri, A.: Size effects on strength, toughness and ductility, Journal of Engineering Mechanics, 115 (1989), 1375–1392.

    Article  Google Scholar 

  15. Carpinteri, A.: Cusp catastrophe interpretation of fracture instability, Journal of the Mechanics and Physics of Solids, 37 (1989), 567–582.

    Article  MATH  Google Scholar 

  16. Carpinteri, A. and G. Ferro: Size effects on tensile fracture properties: a unified explanation based on disorder and fractality of concrete microstructure, Materials & Structures, 27 (1994), 563–571.

    Article  Google Scholar 

  17. Carpinteri, A., Ferrara, G. and L. Imperato: Scaling laws for strength and toughness of disordered materials: a unified theory based on fractal geometry, Engineering Fracture Mechanics, 48 (1994), 673–689.

    Article  Google Scholar 

  18. Carpinteri, A., Chiaia, B. and G. Ferro: Size effects on nominal tensile strength of concrete structures: multifractality of material ligaments and dimensional transition from order to disorder, Materials & Structures, 28 (1995), 311–317.

    Article  Google Scholar 

  19. Carpinteri, A. and B. Chiaia: Multifractal nature of concrete fracture surfaces and size effects on nominal fracture energy, Materials & Structures, 28 (1995), 435–443.

    Article  Google Scholar 

  20. Carpinteri, A. and B. Chiaia: Size effects on concrete fracture energy: dimensional transition from order to disorder, Materials & Structures, 29 (1996), 259–266.

    Article  Google Scholar 

  21. Carpinteri, A. and G. Ferro: Scaling behaviour and dual renormalization of experimental tensile softening responses, to appear.

    Google Scholar 

  22. Hutchinson, J.W.: Singular behavior at the end of a tensile crack in a hardening material, Journal of the Mechanics and Physics of Solids, 16 (1968), 13–31.

    Article  MATH  Google Scholar 

  23. Rice, J.R. and G.F. Rosengren: Plane strain deformation near a crack tip in a power-law hardening material, Journal of the Mechanics and Physics of Solids, 16 (1968), 1–12.

    Article  MATH  Google Scholar 

  24. Carpinteri, A.: Stress-singularity and generalized fracture toughness at the vertex of re-entrant corners, Engineering Fracture Mechanics, 26 (1987), 143–155.

    Article  Google Scholar 

  25. Comben, A.J.: The effect of depth on the strength properties of timber beams, Special Report No. 12, Department of Scientific and Industrial Research, London 1957.

    Google Scholar 

  26. Richards, C.W.: Size effect in the tension test of mild steel, Proceedings of the American Society for Testing and Materials, 54 (1954), 995–1000.

    Google Scholar 

  27. Strange, P.C. and A.H. Bryant: Experimental tests on concrete fracture, Journal of the Engineering Mechanics Division (ASCE), 105 (1979), 337–342.

    Google Scholar 

  28. Sabnis, G.M. and S.M. Mirza: Size effects in model concretes?, Journal of the Structural Division (ASCE), 105 (1979), 1007–1020.

    Google Scholar 

  29. Carpinteri, A. and G.P. Yang: Fractal dimension evolution of microcrack net in disordered materials, Theoretical and Applied Fracture Mechanics, 25 (1996), 73–81.

    Article  Google Scholar 

  30. Buckingham, E.: Model experiments and the form of empirical equations, ASME Transactions, 37 (1915), 263–296.

    Google Scholar 

  31. Popper, K.R.: The Logic of Scientific Discovery, Hutchinson, London 1968.

    Google Scholar 

  32. Weibull, W.: A Statistical Theory of the Strength of Materials, Swedish Royal Institute for Engineering Research, Stockholm 1939.

    Google Scholar 

  33. Adams, N.J.I. and H. G. Munro: A single test method for evaluation of the J-integral as a fracture parameter, Engineering Fracture Mechanics, 6 (1974), 119–132.

    Article  Google Scholar 

  34. Carpinteri, A., Marega, C. and A. Savadori: Size effects and ductile-brittle transition of polypropylene, Journal of Materials Science, 21 (1986), 4173–4178.

    Article  Google Scholar 

  35. Barenblatt, G.I.: Similarity, Self-Similarity and Intermediate Asymptotics, Consultants Bureau, New York 1979.

    Book  MATH  Google Scholar 

  36. Goldstein, R.V. and A.B. Mosolov: Fractal cracks, Journal of Applied Mathematics and Mechanics, 56 (1992), 563–571.

    Article  Google Scholar 

  37. Carpinteri, A. and B. Chiaia: Power scaling laws and dimensional transitions in solid mechanics, Chaos, Solitons and Fractals, in print.

    Google Scholar 

  38. Carpinteri, A. and B. Chiaia: Multifractal scaling laws in the breaking behavior of disordered materials, Chaos, Solitons and Fractals, in print.

    Google Scholar 

  39. Carpinteri, A. and B. Chiaia: Crack-resistance behavior as a consequence of self-similar fracture topologies, International Journal of Fracture, 76 (1996), 327–340.

    Google Scholar 

  40. Hasegawa, T., Shioya, T. and T. Okada: Size effect on splitting tensile strength of concrete, in Proceedings of the 7th Conference of the Japan Concrete Institute, JCI, (1985), 309–312.

    Google Scholar 

  41. Bazant, Z.P., Kazemi, M.T., Hasegawa, T. and J. Mazars: Size effects in Brazilian split-cylinder tests: measurements and fracture analysis, ACI Materials Journal, 85 (1991), 347–351.

    Google Scholar 

  42. Elices, M., Guinea, G.V. and J. Planas: Measurement of the fracture energy using three-point bend tests: Part 3–Influence of cutting the P-S tail, Materials & Structures, 25 (1992), 327–334.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Wien

About this chapter

Cite this chapter

Carpinteri, A. (1997). Self-Similarity and Fractality in Microcrack Coalescence and Solid Rupture. In: Carpinteri, A., Mainardi, F. (eds) Fractals and Fractional Calculus in Continuum Mechanics. International Centre for Mechanical Sciences, vol 378. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2664-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2664-6_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82913-4

  • Online ISBN: 978-3-7091-2664-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics