Advertisement

Structural Morphology and Constitutive Behaviour of Microheterogeneous Materials

  • A. Zaoui
Part of the International Centre for Mechanical Sciences book series (CISM, volume 377)

Abstract

One of the main specific aspects of continuum micromechanics is related to the fact that one has generally to deal with ill-defined bodies: only partial information on the statistical distribution of the constituent phases of the considered random inhomogeneous materials is available.

The first chapter briefly reports the main classical ways to use such an information in the context of linear elasticity for the derivation of bounds and estimates; attention is then focused on isotropic particulate composites and especially on Hashin’s composite spheres assemblage. New estimates are proposed for the overall shear modulus which include Hashin’s bounds as well as the three-phase model estimate: improved Hashin-Shtrikmantype bounds are conjectured from this analysis.

The second chapter presents a proof of this guess as well as a generalization of the method used for arbitrary “morphological representative patterns”; the classical HashinShtrikman variational procedure is adapted to such a morphological analysis. Applications to the derivation of bounds and estimates for the overall elastic moduli are developed both for isotropic and anisotropic distributions of the patterns.

In the third chapter, we lay the stress on behavioral aspects of this approach, with special emphasis on the viscoelastic coupling. Whereas it is easy to study the influence of morphological characteristics on the overall behaviour of linearly viscoelastic materials, this is more difficult to do for nonlinear behaviours: Hill’s treatment of the rate-independent classical self-consistent model is highlighted and extended to rate-dependent behaviours but this remains an approximation and new ways have still to be explored.

Keywords

Structural Morphology Constitutive Behaviour Inclusion Problem Matrix Connectedness Isotropic Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion and related problems, Proc. Roy. Soc. London, A 241 (1957), 376–396.CrossRefGoogle Scholar
  2. 2.
    Kröner, E.: Bounds for effective elastic moduli of disordered materials, J. Mech. Phys. Solids, 25 (1977), 137–155.CrossRefGoogle Scholar
  3. 3.
    Hashin, Z.: The elastic moduli of heterogeneous materials, J. Appl. Mech, 29 (1962), 143–150.CrossRefGoogle Scholar
  4. 4.
    Christensen, R.M.: Mechanics of composite materials, Wiley-Interscience, New-York 1979.Google Scholar
  5. 5.
    Stolz, C. and Zaoui, A.: Analyse morphologique et approches variationnelles du comportement d’un milieu élastique hétérogène, C. R. Acad. Sci. Paris, II 312 (1991), 143–150.Google Scholar
  6. 6.
    Bornert, M., Stolz C.and Zaoui A.: Morphologically representative pattern-based bounding in elasticity, J. Mech. Phys. Solids, 44 (1996), 307–331.CrossRefGoogle Scholar
  7. 7.
    Bornert, M.: A generalized pattern-based self-consistent scheme, Comp. Mat. Science, 5 (1996), 17–31.Google Scholar
  8. 8.
    Rougier, Y., Stolz, C. and Zaoui, A.: Représentation spectrale en viscoélasticité linéaire des matériaux hétérogènes, C. R. Acad. Sci. Paris, II 316 (1993), 1517–1522.Google Scholar
  9. 9.
    Hill, R.: Continuum micro-mechanics of elastoplastic polycrystals, J. Mech. Phys. Solids, 13 (1965), 89–101.CrossRefGoogle Scholar
  10. 10.
    Rougier, Y., Stolz C. and Zaoui, A.: Self-consistent modelling of elastic-viscoplastic polycrystals, C. R. Acad. Sci. Paris, II 318 (1994), 145–151.Google Scholar
  11. 11.
    Mori, T. and Tanaka, K.: Average stress in the matrix and average elastic energy of materials with misfitting inclusions, Acta Metall., 21 (1973), 571–574.CrossRefGoogle Scholar
  12. 12.
    Hershey, A.V.: The elasticity of an isotropic aggregate of anisotropic cubic crystals, J. Appl. Mech., 21 (1954), 236–240.Google Scholar
  13. 13.
    Kröner, E.: Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einskristalls, Z. Phys., 151 (1958), 504–518.CrossRefGoogle Scholar
  14. 14.
    Walpole, L.: On bounds for the overall elastic moduli of inhomogeneous systems–I, J. Mech. Phys. Solids, 14 (1966), 151–162.CrossRefGoogle Scholar
  15. 15.
    Hashin, Z. and Shtrikman, S.: A variational approach to the theory of the elastic behaviour of multiphase materials, J. Mech. Phys. Solids, 11 (1963), 127–140.CrossRefGoogle Scholar
  16. 16.
    Kröner, E.: Self-consistent scheme and graded disorder in polycrystal elasticity, J. Phys. F., 8 (1978), 2261–2267.CrossRefGoogle Scholar
  17. 17.
    Kröner, E.: Graded and perfect disorder in random media elasticity, J. Engng. Mech. Div., 106-EM5 (1980), 889–914.Google Scholar
  18. 18.
    Zimmermann, R.W.: Elastic moduli of a solid containing spherical inclusions, Mech. Mater., 12 (1991), 17–24.CrossRefGoogle Scholar
  19. 19.
    Christensen, R.M.: A critical evaluation for a class of micro-mechanical models, J. Mech. Phys. Solids, 38 (1990), 379–404.CrossRefGoogle Scholar
  20. 20.
    Christensen, R.M. and Lo, K.H.: Solutions for effective shear properties in three phase sphere and cylinder models, J. Mech. Phys. Solids, 27 (1979), 315–330.CrossRefGoogle Scholar
  21. 21.
    Love, A.E.H.: A treatise on the mathematical theory of elasticity, Dover Publications, New York 1944.Google Scholar
  22. 22.
    Eshelby, J.D.: The continuum theory of lattice defects, in: Progress in Solid State Physics 3 (Eds. F. Seitz and D. Turnbull ), Academic Press, New York 1956, 79–144.Google Scholar
  23. 23.
    Hervé, É. and Zaoui, A.: Modelling the effective behaviour of nonlinear matrix/inclusion composites, Eur. J. Mech. A/Solids, 9 (1990), 505–515.Google Scholar
  24. 24.
    Hervé, É. and Zaoui, A.: n-layered inclusion-based micromechanical modelling, Int. J. Engng Sci., 31 (1993), 1–10.CrossRefGoogle Scholar
  25. 25.
    Hervé, É. and Zaoui, A.: Elastic behaviour of multiply coated fibre-reinforced composites, Int. J. Engng Sci., 33 (1995), 1419–1433.CrossRefGoogle Scholar
  26. 26.
    Hashin, Z. and Rosen, B.W.: The elastic moduli of fiber-reinforced materials, J. Appl. Mech., 31 (1964), 223–232.CrossRefGoogle Scholar
  27. 27.
    Hervé, É., Stolz, C. and Zaoui, A.: À propos de l’assemblage de sphères composites de Hashin, C. R. Acad. Sci. Paris, II 313 (1991), 857–862.Google Scholar
  28. 28.
    Milton, G. and Kohn, R.: Variational bounds on the effective moduli of anisotropic composites, J. Mech. Phys. Solids, 36 (1988), 597–629.CrossRefGoogle Scholar
  29. 29.
    Bornert, M.: Ph. D. Dissertation, E.N.P.C., Paris, 1996.Google Scholar
  30. 30.
    Willis, J.R.: Bounds and self-consistent estimatesfor the overall properties of anisotropic composites, J. Mech. Phys. Solids, 17 (1977), 185–202.CrossRefGoogle Scholar
  31. 31.
    Ponte Casteñeda, P. and Willis, J.R.: The effect of spatial distribution on the effective behaviour of composite materials and cracked media, J. Mech. Phys. Solids, 43 (1995), 1919–1951.CrossRefGoogle Scholar
  32. 32.
    Suquet, P.: Elements of homogenization for inelastic solid mechanics, in: Homogenization Tecniques for composite media (Eds. E. Sanchez-Palencia and A. Zaoui), Lecture Notes in Physics 272, Springer-Verlag, Berlin 1985, 193–278.Google Scholar
  33. 33.
    Mandel, J.: Mécanique des milieux continus, Gauthier-Villars, Paris 1966.Google Scholar
  34. 34.
    Laws, N. and McLaughlin, R.: Self-consistent estimates for the viscoelastic creep compliances of composite materials, Proc. R. Soc. Lond., A 359 (1978), 251–273.CrossRefGoogle Scholar
  35. 35.
    Rougier, Y.: Ph. D. Dissertation, Ecole Polytechnique, Palaiseau, 1994.Google Scholar
  36. 36.
    Beurthey, S.: private communication, 1995.Google Scholar
  37. 37.
    Kröner, E.: Zur plastischen Verformung des Vielkristalls, Acta Metall, 9 (1961), 155–161.CrossRefGoogle Scholar
  38. 38.
    Berveiller, M. and Zaoui, A.: An extension of the self-consistent scheme to plastically flowing polycrystals, J. Mech. Phys. Solids, 26 (1979), 325–344.CrossRefGoogle Scholar
  39. 39.
    Hutchinson, J.W.: Bounds and self-consistent estimates for creep of polycrystalline materials, Proc. Roy. Soc. London, A 348 (1976), 101–127.CrossRefGoogle Scholar
  40. 40.
    Weng, G.J.: Self-consistent determination of time-dependent behaviour of metals, J. Appl. Mech., 48 (1981), 41–46.CrossRefGoogle Scholar
  41. 41.
    Harren, S.V.: The finite deformation of rate-dependent polycrystals, J. Mech. Phys. Solids, 39 (1991), 345–383.CrossRefGoogle Scholar
  42. 42.
    Nemat-Nasser, S. and Obata, M.: Rate-dependent finite elastoplastic deformation of polycrystals, Proc. Roy. Soc. London, A 407 (1986), 343–375.CrossRefGoogle Scholar
  43. 43.
    Zaoui, A. and Raphanel, J.L.: On the nature of the intergranular accommodation in the modelling of elastoviscoplastic behavior of polycrystalline aggregates, in: Large plastic deformations, Fundamentals and applications to metal forming (Eds. C. Teodosiu, J.L. Raphanel and F. Sidoroff ), Balkema, Rotterdam 1993, 185–192.Google Scholar
  44. 44.
    Zaoui, A. Rougier, Y. and Stolz, C.: Micromechanical modelling based on morphological analysis; Application to viscoelasticity, in: Microstructure-Property Interactions in Composite Materials (Ed. R. Pyrz ), Kluwer Academic Publishers, Dordrecht 1995, 419–430.CrossRefGoogle Scholar
  45. 45.
    Navidi, P., Rougier, Y. and Zaoui, A.: Self-consistent modelling of elasticviscoplastic multiphase materials, in: Micromechanics of plasticity and damage of multiphase materials (Eds. A. Pineau and A. Zaoui ), Kluwer Academic Pub., Dordrecht 1996, 123–130.CrossRefGoogle Scholar
  46. 46.
    Molinari, A., Canova, G.R. and Ahzi, S.: A self-consistent approach of the large deformation polycrystal viscoplasticity, Acta Metall. Mater., 35 (1987), 2983–2994.CrossRefGoogle Scholar
  47. 47.
    Ponte-Castaneda, P.: Exact second-order estimates for the effective mechanical properties of nonlinear composite materials, J. Mech. Phys. Solids, 44 (1996), 827–862.CrossRefGoogle Scholar
  48. 48.
    Gilormini, P.: A critical evaluation for various nonlinear extensions of the self-consistent model, in: Micromechanics of plasticity and damage of multiphase materials (Eds. A. Pineau and A. Zaoui ), Kluwer Academic Pub., Dordrecht 1996, 67–74.CrossRefGoogle Scholar
  49. 49.
    Suquet, P.: Overall properties of nonlinear composites; remarks on secant and incremental formulations, in: Micromechanics of plasticity and damage of multiphase materials (Eds. A. Pineau and A. Zaoui ), Kluwer Academic Pub., Dordrecht 1996, 149–156.CrossRefGoogle Scholar
  50. 50.
    Bornert, M., Hervé, É., Stolz, C. and Zaoui, A.: Self-consistent approaches and strain heterogeneities in two-phase elastoplastic materials, Appl. Mech. Rev., 47 (1994), 66–76.CrossRefGoogle Scholar
  51. 51.
    Bornert, M.: Morphological effects at the local scale in two-phase materials; some experimental evidence and tentative modelling, in: Micromechanics of plasticity and damage of multiphase materials (Eds. A. Pineau and A. Zaoui ), Kluwer Academic Pub., Dordrecht 1996, 27–34.CrossRefGoogle Scholar
  52. 52.
    Suquet P.: Overall properties of nonlinear composites: a modified secant moduli theory and its link with Ponte Castaneda’s nonlinear variational procedure, C. R. Acad. Sci. Paris, II 320 (1995), 563–571.Google Scholar

Copyright information

© Springer-Verlag Wien 1997

Authors and Affiliations

  • A. Zaoui
    • 1
  1. 1.Ecole PolytechniquePalaiseauFrance

Personalised recommendations