Skip to main content

Effective Properties of Nonlinear Composites

  • Chapter
Continuum Micromechanics

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 377))

Abstract

These lectures describe several procedures commonly used or recently developed to predict the overall behavior of nonlinear composites from the behavior of their individual constituents and from statistical information about their microstructure. Secant methods are discussed in section 2. A modified method based on the second-order moment of the strain field is proposed and compared with the classical secant method in specific situations, composites with large or small contrast and power-law materials. The incremental method is presented in section 3. It appears much stiffer than the two secant methods. Its predictions for isotropic two-phase power-law composites even violate a rigorous upper bound when the nonlinearity is strong. A variational procedure leading to rigorous upper bounds for the effective potential of the composite is presented in section 4. Specific forms for voided or rigidly reinforced power-law composites are given first. Then a general upper bound applying to a general class of nonlinear composites is derived. The variational procedure coincides with the secant approach based on second-order moments and with the variational procedure of Ponte Castñneda. These different schemes are applied in section 5 to predict the overall behavior of metal-matrix composites. A simplified model based on the variational procedure is proposed. Its predictions compared well with simulations performed by the Finite Element Method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bao G., Hutchinson J., and Mcmeeking R.: The flow stress of dual-phase, non-hardening solids. Mech. Materials, 12, 85–94, 1991.

    Article  Google Scholar 

  2. Berveiller M. and Zaoui A.: An extension of the self-consistent scheme to plastically-flowing polycrystals. J. Mech. Phys. Solids, 26, 325–344, 1979.

    Article  Google Scholar 

  3. Bishop J. and Hill R.: A theory of the plastic distortion of a polycrystalline aggregate under combined stresses. Phil. Mag., 42, 414–427, 1951.

    Google Scholar 

  4. Bornert M., Stolz C., and Zaoui A.: Morphologically representative pattern-based bounding in elasticity. J. Mech. Phys. Solids, 44: 307–331, 1996.

    Article  Google Scholar 

  5. Bouchitte G. and Suquet P.: Homogenization, plasticity and yield design. In Dal Maso G. and Dell’Antonio G. (eds), Composite Media and Homogenization Theory, pp 107–133. Birkhauser, 1991.

    Google Scholar 

  6. Buryachenko V.: Effective strength properties of elastic physically nonlinear composites. In Marigo J.J. and Rousselier G. (eds), Micromechanics of Materials, pp 567–578. Eyrolles, 1993.

    Google Scholar 

  7. Buryachenko V.: The overall elastoplastic behavior of multiphase materials with isotropic components. submitted, 1995.

    Google Scholar 

  8. Christensen R. and Lo K.: Solutions for effective shear properties in three phase sphere and cylinder models. J. Mech. Phys. Solids, 27, 315–330, 1979.

    Article  Google Scholar 

  9. Chu T. and Hashin Z.: Plastic behavior of composites and porous media under isotropic stress. Int. J. Engng Sci., 9, 971–994, 1971.

    Article  Google Scholar 

  10. DE Buhan P. and Taliercio A.: A homogenization approach to the yield strength of composites. European J. Mechanics: A/ Solids, 10, 129–154, 1991.

    Google Scholar 

  11. Drucker D.: On minimum weight design and strength of non-homogeneous plastic bodies. In Olszag W. (ed.), Non-homogeneity in Elasticity and Plasticity. Pergamon Press, New-York, 1959.

    Google Scholar 

  12. Dvorak G.: On uniform fields in heterogeneous media. Proc. R. Soc. Lond. A, 431, 89–110, 1990.

    Article  Google Scholar 

  13. Dvorak G.: Transformation field analysis of inelastic composite materials. Proc. R. Soc. Lond. A, 437, 311–327, 1992.

    Article  Google Scholar 

  14. Dvorak G., Bahei-EL-Din Y., Macheret Y., and Liu C.: An experimental study of elastic-plastic behavior of a fibrous boron-aluminum composite. J. Mech. Phys. Solids, 36, 655–687, 1988.

    Article  Google Scholar 

  15. Dvorak G., Bahei-EL-Din Y., and Wafa A.: The modeling of inelastic composite materials with the transformation field analysis. Modelling Simul. Mater. Sci. Eng, 2, 571–586, 1994.

    Article  Google Scholar 

  16. Ekeland I. and Temam R.: Analyse convexe et problèmes variationnels. Dunod, Gauthier-Villars, Paris, 1974.

    Google Scholar 

  17. Garajeu M.: Private communication.

    Google Scholar 

  18. Gilormini P.: Insuffisance de l’extension classique du modèle auto-cohérent au comportement non linéaire. C. R. Acad. Sc. Paris lib, 320, 115–122, 1995.

    Google Scholar 

  19. Hashin Z.: The elastic moduli of heterogeneous materials. J. Appl. Mech., 29, 143–150, 1962.

    Article  Google Scholar 

  20. Hashin Z.: Failure criteria for unidirectional fiber composites. J. Appl. Mech., 47, 329–334, 1980.

    Article  Google Scholar 

  21. Hashin Z. and Shtrikman S.: A variational approach to the theory of the elastic behavior of multiphase materials. J. Mech. Phys. Solids, 11, 127–140, 1963.

    Article  Google Scholar 

  22. HervÉ E., Stolz C., and Zaoui A.: A propos de l’assemblage des sphères composites de Hashin. C. R. Acad. Sc. Paris, II, 313, 857–862, 1991.

    Google Scholar 

  23. Hill R.: Continuum micro-mechanics of elastoplastic polycrystals. J. Mech. Phys. Solids, 13, 89–101, 1965.

    Article  Google Scholar 

  24. Hill R.: A self-consistent mechanics of composite materials. J. Mech. Phys. Solids, 13, 213–222, 1965.

    Article  Google Scholar 

  25. Hill R.: The essential structure of constitutive laws for metal composites and polycrystals. J. Mech. Phys. Solids, 15, 79–95, 1967.

    Article  Google Scholar 

  26. Hutchinson J.: Bounds and self-consistent estimates for creep of polycrystalline materials. Proc. Roy. Soc. Lond., A348, 101–127, 1976.

    Article  Google Scholar 

  27. Kreher W.: Residual stresses and stored elastic energy of composites and poly-crystals. J. Mech. Phys. Solids, 38, 115–128, 1990.

    Article  Google Scholar 

  28. Kröner E.: Bounds for effective elastic moduli of disordered materials. J. Mech. Phys. Solids, 25, 137–155, 1977.

    Article  Google Scholar 

  29. Levin V.: Thermal expansion coefficients of heterogeneous materials. Mekh. Tverd. Tela, 2, 83–94, 1967.

    Google Scholar 

  30. Marcellini P.: Periodic solutions and homogenization of nonlinear variational problems. Ann. Mat. Pura Appl., 117, 139–152, 1978.

    Article  Google Scholar 

  31. Marigo J., Mialon P., Michel J., and Suquet P.: Plasticité et homogénéisation: un exemple de prévision des charges limites d’une structure périodiquement hétérogène. J. Méca. Th. Appl., 6, 47–75, 1987.

    Google Scholar 

  32. Michel J. and Suquet P.: The constitutive law of nonlinear viscous and porous materials. J. Mech. Phys. Solids, 40, 783–812, 1992.

    Article  Google Scholar 

  33. Michel J. and Suquet P.: On the strength of composite materials: variational bounds and numerical aspects. In Bendsoe M.P. and Mota-Soares C. (eds), Topology Design of Structures, pp 355–374. Kluwer Pub., 1993.

    Google Scholar 

  34. Milton G. and Kohn R.: Variational bounds of the effective moduli of anisotropic composites. J. Mech. Phys. Solids, 36, 597–629, 1988.

    Article  Google Scholar 

  35. Moulinec H. and Suquet P.: A fast numerical method for computing the linear and nonlinear properties of composites. C. R. Acad. Sc. Paris II, 318, 1417–1423, 1994.

    Google Scholar 

  36. Moulinec H. and Suquet P.: A Fft-based numerical method for computing the mechanical properties of composites from images of their microstructure. In Pyrz R. (ed.), Microstructure-Property Interactions in Composite Materials, pp 235–246. Kluwer Acad. Pub., 1995.

    Chapter  Google Scholar 

  37. Moulinec H. and Suquet P.: A numerical method for computing the overall response of nonlinear composites with complex microstructure. submitted, 1996.

    Google Scholar 

  38. Olson T.: Improvements on Taylor’s upper bound for rigid-plastic bodies. Mater. Sc. Engng, A 175, 15–20, 1994.

    Article  Google Scholar 

  39. Ponte Castañeda P.: The effective mechanical properties of nonlinear isotropic composites. J. Mech. Phys. Solids, 39, 45–71, 1991.

    Article  Google Scholar 

  40. Ponte Castañeda P.: New variational principles in plasticity and their application to composite materials. J. Mech. Phys. Solids, 40, 1757–1788, 1992.

    Article  Google Scholar 

  41. Ponte Castañeda P.: Exact second-order estimates for the effective mechanical properties of nonlinear composite materials. J. Mech. Phys. Solids, 44, 827–862, 1996.

    Article  Google Scholar 

  42. Ponte Castañeda P.: A second-order theory for nonlinear composite materials. C.R. Acad. Sc. Paris, 322, Série II b, 3–10, 1996.

    Google Scholar 

  43. Ponte Castañeda P. and Debotton G.: On the homogenized yield strength of two-phase composites. Proc. R. Soc. London A, 438, 419–431, 1992.

    Article  Google Scholar 

  44. Ponte Castañeda P. and Nebozhyn M.: Exact second-order estimates of the self-consistent type for nonlinear composite materials. submitted, 1996.

    Google Scholar 

  45. Ponte Castañeda P. and Suquet P.: On the effective mechanical behavior of weakly inhomogeneous nonlinear materials. Eur. J. Mech. A/Solids, 14, 205–236, 1995.

    Google Scholar 

  46. Ponte Castañeda P. and Willis J.: The effect of spatial distribution on the effective behaviour of composite materials and cracked media. J. Mech. Phys. Solids, 43, 1919–1951, 1995.

    Article  Google Scholar 

  47. Qiu Y. and Weng G.: A theory of plasticity for porous materials and particle-reinforced composites. J. Appl. Mech., 59, 261–268, 1992.

    Article  Google Scholar 

  48. Suquet P.: Analyse limite et homogénéisation. C.R. Acad. Sc. Paris, II, 296, 1355–1358, 1983.

    Google Scholar 

  49. Suquet P.: Elements of homogenization for inelastic solid mechanics. In Sanchez-Palencia E. and Zaoui A. (eds), Homogenization Techniques for Composite Media, Lecture Notes in Physics 272, pp 193–278. Springer Verlag, 1987.

    Google Scholar 

  50. Suquet P.: On bounds for the overall potential of power law materials containing voids with arbitrary shape. Mech. Res. Comm., 19, 51–58, 1992.

    Article  Google Scholar 

  51. Suquet P.: Overall potentials and extremal surfaces of power law or ideally materials. J. Mech. Phys. Solids, 41, 981–1002, 1993.

    Article  Google Scholar 

  52. Suquet P.: Overall properties of nonlinear composites: a modified secant moduli theory and its link with Ponte Castaiieda’s nonlinear variational procedure. C.R. Acad. Sc. Paris, 320, Série IIb, 563–571, 1995.

    Google Scholar 

  53. Suquet P. and Ponte Castañeda P.: Small-contrast perturbation expansions for the effective properties of nonlinear composites. C.R. Acad. Sc. Paris, 317, Série II, 1515–1522, 1993.

    Google Scholar 

  54. Suquet P.: Overall properties of nonlinear composites: Remarks on secant and incremental formulations. In Pineau A. and Zaoui A. (eds), Plasticity and Damage of Multiphase materials, pp 149–156. Kluwer Acad. Pub., 1996.

    Google Scholar 

  55. Suquet P.: Overall properties of nonlinear composites: secant moduli theories and variational bounds. In Markov K. (ed.), Continuum Models of Discrete Systems 8, pp 290–299. World Scientific, 1996.

    Google Scholar 

  56. Talbot D. and Willis J.: Variational principles for inhomogeneous nonlinear media. IMA J. Appl. Math., 35, 39–54, 1985.

    Article  Google Scholar 

  57. Talbot D. and Willis J.: Some explicit bounds for the overall behavior of nonlinear composites. Int. J. Solids Struct., 29, 1981–1987, 1992.

    Article  Google Scholar 

  58. Talbot D. and Willis J.: Upper and lower bounds for the overall properties of a nonlinear composite dielectric. I. random microgeometry. Proc. R. Soc. Lond. A, 447, 365–384, 1994.

    Article  Google Scholar 

  59. Tandon G. and Weng G.: A theory of particle-reinforced plasticity. J. Appl. Mech., 55, 126–135, 1988.

    Article  Google Scholar 

  60. Walpole L.: On bounds for the overall elastic moduli of inhomogeneous systems–I and II. J. Mech. Phys. Solids, 14,151–162 and 289–301, 1966.

    Google Scholar 

  61. Willis J.: Bounds and self-consistent estimates for the overall moduli of anisotropic composites. J. Mech. Phys. Solids, 25, 185–202, 1977.

    Article  Google Scholar 

  62. Willis J.: The structure of overall constitutive relations for a class of nonlinear composites. IMA J. Appl. Math., 43, 231–242, 1989.

    Article  Google Scholar 

  63. Willis J.: On methods for bounding the overall properties of nonlinear composites. J. Mech. Phys. Solids, 39, 73–86, 1991.

    Article  Google Scholar 

  64. Zaoui A. This volume.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Wien

About this chapter

Cite this chapter

Suquet, P. (1997). Effective Properties of Nonlinear Composites. In: Suquet, P. (eds) Continuum Micromechanics. International Centre for Mechanical Sciences, vol 377. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2662-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2662-2_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82902-8

  • Online ISBN: 978-3-7091-2662-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics