Skip to main content

Recent Extensions of Gurson’s Model for Porous Ductile Metals

  • Chapter

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 377))

Abstract

This paper is devoted to two distinct extensions of Gurson’s (1977) famous model for plastic voided metals. Gurson’s work was based on an approximate limit-analysis of a typical elementary volume in a porous material, namely a hollow sphere subjected to conditions of arbitrary homogeneous boundary strain rate. The first extension envisaged consists in considering a more general geometry, namely a spheroidal volume containing some spheroidal confocal cavity. The aim here is to incorporate void shape effects into Gurson’s model. The second extension again considers a hollow sphere, but now subjected to conditions of inhomogeneous boundary strain rate. The goal is to account for possible strong variations of the macroscopic mechanical fields at the scale of the representative cell (i.e. of the void spacing), as encountered near crack tips.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Budiansky, B., Hutchinson, J.W., and Slutsky, S., 1982, Void growth and collapse in viscous solids, in Mechanics of Solids, Hopkins and Sewell, eds., Pergamon Press, Oxford, pp. 13–45.

    Google Scholar 

  • Drugan, W.J., and Willis, J.R., 1996, A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites, J. Mech. Phys. Solids, 44, 497–524.

    Article  Google Scholar 

  • Garajeu, M., 1995, Contribution à l’étude du comportement non linéaire de milieux poreux avec ou sans renfort, Thèse de Doctorat, Université de la Méditerranée, Marseille.

    Google Scholar 

  • Germain, P., 1973a, La méthode des puissances virtuelles en mécanique des milieux continus. Première partie: Théorie du second gradient, J. Mécanique, 12, 235–274.

    Google Scholar 

  • Germain, P., 1973b, The method of virtual power in continuum mechanics. Part 2: Microstructure, SIAM J. Appl. Math., 25, 556–575.

    Article  Google Scholar 

  • Gologanu, M., 1996, Thèse de Doctorat, in preparation, Université Pierre et Marie Curie, Paris.

    Google Scholar 

  • Gologanu, M., Leblond, J.B., and Devaux, J., 1993, Approximate models for ductile metals containing non-spherical voids–Case of axisymmetric prolate ellipsoidal cavities, J. Mech. Phys. Solids, 41, 1723–1754.

    Article  Google Scholar 

  • Gologanu, M., Leblond, J.B., and Devaux, J., 1994, Approximate models for ductile metals containing non-spherical voids–Case of axisymmetric oblate ellipsoidal cavities, ASME J. Eng. Mat. Tech., 116, 290–297.

    Article  Google Scholar 

  • Gradshteyn, I.S., and Ryzhik, I.M., 1980, Table of Integrals, Series, and Products, Academic Press, New-York.

    Google Scholar 

  • Gurson, A.L., 1977, Continuum theory of ductile rupture by void nucleation and growth: Part I–Yield criteria and flow rules for porous ductile media, ASME J. Eng. Mat. Tech., 99, 2–15.

    Article  Google Scholar 

  • Hill, R., 1967, The essential structure of constitutive laws for metal composites and polycrystals, J. Mech. Phys. Solids, 15, 79–95.

    Article  Google Scholar 

  • Koplik, J., and Needleman, A., 1988, Void growth and coalescence in porous plastic solids, Int. J. Solids Structures, 24, 835–853.

    Article  Google Scholar 

  • Leblond, J.B., and Perrin, G., 1995, Introduction à la mécanique de la rupture ductile des métaux, Cours de l’Ecole Polytechnique, Paris.

    Google Scholar 

  • Leblond, J.B., Perrin, G., and Devaux, J., 1994, Bifurcation effects in ductile metals with nonlocal damage, ASME J. Appl. Mech., 61, 236–242.

    Article  Google Scholar 

  • Lee, B.J., and Mear, M.E., 1992, Axisymmetric deformation of power-law solids containing a dilute concentration of aligned spheroidal voids, J. Mech. Phys. Solids, 40, 1805–1836.

    Article  Google Scholar 

  • Mandel, J., 1964, Contribution théorique à l’étude de l’écrouissage et des lois d’écoulement plastique, in Proceedings of the 11th International Congress on Applied Mechanics, Springer, Berlin, pp. 502–509.

    Google Scholar 

  • Mazataud, P., 1995, private communication.

    Google Scholar 

  • Mindlin, R.D., 1964, Microstructure in linear elasticity, Archives Rat. Mech. Anal., 16, 51–78.

    Google Scholar 

  • Mindlin, R.D., and Eshel, N.N., 1968, On first strain-gradient theories in linear elasticity, Int. J. Solids Structures, 4, 109–124.

    Article  Google Scholar 

  • Mura, T., 1982, Micromechanics of Defects in Solids, Martinus Nijhoff Publishers, The Hague.

    Book  Google Scholar 

  • Pijaudier-Cabot, G., and Bazant, Z.P., 1987, Nonlocal damage theory, ASCE J. Eng. Mech., 113, 1512–1533.

    Article  Google Scholar 

  • Pineau, A., and Joly, P., 1991, Local versus global approaches of elastic-plastic fracture mechanics. Application to ferritic steels and a cast duplex stainless steel, in Defects Assessment in Components - Fundamentals and Applications, Blauel and Schwalbe, eds., ESIS, EGF publication 9.

    Google Scholar 

  • Ponte-Castaneda, P., and Zaidman, M., 1994, Constitutive models for porous materials with evolving microstructure, J. Mech. Phys. Solids, 42, 1459–1495.

    Article  Google Scholar 

  • Sovik, O.P., 1995, private communication.

    Google Scholar 

  • Suquet, P., 1982, Plasticité et homogénéisation, Thèse de Doctorat d’Etat, Université Pierre et Marie Curie, Paris.

    Google Scholar 

  • Suquet, P., and Ponte-Castaneda, P., 1993, Small-contrast perturbation expansions for the effective properties on nonlinear composites, C. R. Acad. Sci. Paris, Série II, 317, 1515–1522.

    Google Scholar 

  • Tvergaard, V., and Needleman, A., 1995, Effects of nonlocal damage in porous plastic solids, Int. J. Solids Structures, 32, 1063–1077.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Wien

About this chapter

Cite this chapter

Gologanu, M., Leblond, JB., Perrin, G., Devaux, J. (1997). Recent Extensions of Gurson’s Model for Porous Ductile Metals. In: Suquet, P. (eds) Continuum Micromechanics. International Centre for Mechanical Sciences, vol 377. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2662-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2662-2_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82902-8

  • Online ISBN: 978-3-7091-2662-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics