Application to Shape Memory Devices

  • E. Patoor
  • Y. Gillet
  • M. Berveiller
Part of the International Centre for Mechanical Sciences book series (CISM, volume 368)


Shape memory alloys play a large role in the development of intelligent systems. Design of these systems needs to know the global relationship between the applied forces and the conjugated kinematical variables for shape memory elements. Such a relation is strongly non linear and temperature dependent. Aim of this work is to derive these relations starting from the definition of a macroscopic criterion for stress induced transformation. This transformation criterion is deduced from micromechanical modelling and takes into account the dissymmetry observed between tensile and compressive tests in these materials. Structure calculations aspects are taken into account using the framework of beam theory. To illustrate these problems two loading cases are solved. First example deals with the analytical solution for pure torsion of a cylindrical beam. Second example deals with more complex loading conditions applying the Bresse integrals technique to superelastic structures. Numerical results obtained in that way well agree with experimental determination performed on superelastic beam in bending and on a helical spring.


Shape Memory Alloy Beam Theory Flow Rule Parabolic Approximation Associate Flow Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    MELTON K.N., Ni-Ti based shape memory alloys“ in DUERIG T.W., MELTON K.N., STÖCKEL D., WAYMAN C.M., Engineering aspect of shape memory alloys, 1991, p.21.Google Scholar
  2. [2]
    MULLER I., HUIBIN XU, On the Pseudo-elastic Hysteresis, Acta metall. mater., Vol. 39, No. 3, pp. 263–271 (1991).CrossRefGoogle Scholar
  3. [3]
    CONTARDO L., GUÉNIN G., Training and Two Way Memory Effect in Cu-ZnAl Alloy, Acta metal. mater., Vol. 38, No. 7, pp. 1267–1272 (1990).CrossRefGoogle Scholar
  4. [4]
    THUMANN M., HORNBOGEN E., Thermal and mechanical fatigue in Cu-base shape memory alloys, Z. Metallkde, Bd. 79, H2, pp. 119–126 (1988).Google Scholar
  5. [5]
    AHLERS M., Martensite and equilibrium phases in Cu-Zn and Cu-Zn-Al alloys Prog. in Materials Science, Vol. 30, pp. 135–186 (1986).CrossRefGoogle Scholar
  6. [6]
    STALMANS R. CADSMA Procs COMETT Course EEC 87/2/C-2/00863, Barcelona (1989).Google Scholar
  7. [7]
    WARAM T., Design principles for Ni-Ti actuators, in Engineering aspects of shape memory alloys, T.W. Duerig et al. Eds, Butterworth-Heinemann (1990).Google Scholar
  8. [8]
    ATANACKOVIC T, ACHENBACH M.,Moment-curvature relations for a pseudoelastic beam, Continuum Mech. Thermodyn., p. 73 (1989).Google Scholar
  9. [9]
    PATOOR E., EBERHARDT A., BERVEILLER M., Comportement pseudo-élastique et effet mémoire de forme double sens. Application It la torsion de barreau cylindrique, Rev. Traitement Thermique, Vol. 234, 43 (1990).Google Scholar
  10. [10]
    TOBUSHI H.,TANAKA K., Deformation of a Shape Memory Alloy Helical Spring,JSME Int. Journal, 1991, Series 1, Vol. 34, No. 1, p. 83.Google Scholar
  11. [11]
    GILLET Y., PATOOR E., BERVEILLER M., Structure calculation applied to Shape Memory Alloys, Journal de Physique IV, Vol. 5, pp. C2–343–348 (1995).Google Scholar
  12. [12]
    BRINSON L.C., LAMMERING R., Finite element analysis of the behavior of shape memory alloys and their applications, Int. J. Solids Structures, Vol. 30, No 23, pp 3261–3280 (1993).CrossRefzbMATHGoogle Scholar
  13. [13]
    LECLERC S., LEXCELLENT C., GELIN J.C.,A finite element calculation for the design of devices made of shape memory alloys, Journal de Physique IV, Vol. 6, pp. C1–225–234 (1996).CrossRefGoogle Scholar
  14. [14]
    MANACH P.Y, FAVIER D., RIO G.,Finite element simulations of internal stresses generated during the ferroelastic deformation of Ni Ti bodies, Journal de Physique IV, Vol. 6, pp. C1–235–244 (1996).CrossRefGoogle Scholar
  15. [15]
    AURICCHIO F., TAYLOR R.L., Shape memory alloy superelastic behavior: 3D finite-element simulation, Procs. 3rd Int. Conf. on Intelligent Material, Lyon, France, pp. 487–492 (1996).Google Scholar
  16. [16]
    ROUMAGNAC P., Étude du comportement en phase martensitique et de l’effet mémoire simple d’alliages à mémoire de forme Ni Ti en fonction du mode de sollicitation, Thèse de doctorat N° D599, UTC, Compiègne, France, 1993.Google Scholar
  17. [17]
    VACHER P., LEXCELLENT C., Study of Pseudoelastic Behaviour of Polycrystallin Shape Memory Alloys by Resistivity Measurement and Acoustic Emission, Procs. ICM 6, Kyoto, Japan, pp. 231–236 (1991).Google Scholar
  18. [18]
    MANACH P.Y., Etude du comportement thermomécanique d’alliages it mémoire de forme NiTi, Thèse de doctorat, Institut National Polytechnique de Grenoble, France (1992).Google Scholar
  19. [19]
    PATOOR E., EL AMRANI M., EBERHARDT A., BERVEILLER M., Determination of the origin for the dissymmetry observed between tensile and compressive tests on shape memory alloys, Journal de Physique IV, Vol. 5, pp. C2–495–500 (1995).Google Scholar
  20. [20]
    HAUTCŒUR A., to appearGoogle Scholar
  21. [21]
    GILLET Y., Dimensionnement d’éléments simples en alliage à mémoire de forme, Thèse de doctorat, Université de Metz, France, 1994.Google Scholar
  22. [22]
    EL AMRANI ZIRIFI M., Contributions it l’étude micromécanique des transformations martensitiques the rmoélastiques, Thèse de doctorat, Université de Metz, France, 1994.Google Scholar
  23. [23]
    EL AMRANI M., BENSALAH M.O., PATOOR E. EBERHARDT A., BERVEILLER M.,Détermination des surfaces de début et de fin de transformation pour un alliage à mémoire de forme, 1° Congrès de Mécanique, Rabat (Maroc), pp. 59–66 (1993).Google Scholar
  24. [24]
    LEMAITRE J., CHABOCHE J.L., Mécanique des matériaux solides CH. 5, Plasticité, Edition Dunod, 1985.Google Scholar
  25. [25]
    SAKAMOTO H., “Fatigue behavior of monoctystalline Cu-Al-Ni shape memory alloys under various deformation modes”, Trans. of the Japan inst. of Metals, Vol. 24, No. 10, pp. 665–673 (1983).Google Scholar
  26. [26]
    GILLET Y., PATOOR E., BERVEILLER M., “Elements of stucture calculation for shape memory device”, Journal de Physique IV, Vol. 1, pp. C4–151–156 (1991).Google Scholar
  27. [27]
    GILLET Y., PATOOR E., BERVEILLER M., “Beam theory applied to shape memory alloys”, Procs. SMST ‘84, Asilomar conference center, Pacific Grove, California, USA, pp 169–174–416 (1994).Google Scholar
  28. [28]
    GILLET Y., PATOOR E., BERVEILLER M., “Mechanical engineering for shape memory alloys”, ICOMAT 92, Monterey (USA), 1992, p. 1241.Google Scholar
  29. [29]
    MORAN S. Flexible instruments in minimal access surgery,Procs. SMST ‘84, Asilomar conference center, Pacific Grove, California, USA, pp 411–416 (1994).Google Scholar
  30. [30]
    PAINE J.S.N., ROGER C.A., Review of multi-functional SMA hybrid composite material and their applications, Procs. ASME WAM ‘84, C.icago, AD- Vol. 45/MD- Vol. 54, p. 37–45 (1994).Google Scholar
  31. [31]
    SEGARD E., GILLET Y, MARTINY M. PATOOR E, “Finite element simulation of superelastic elements”, to appear.Google Scholar

Copyright information

© Springer-Verlag Wien 1997

Authors and Affiliations

  • E. Patoor
    • 1
  • Y. Gillet
    • 1
  • M. Berveiller
    • 1
  1. 1.CNRS URA 1215MetzFrance

Personalised recommendations