Skip to main content

Modelling and Simulation of Transformation Induced Plasticity in Elasto-Plastic Materials

  • Chapter
Mechanics of Solids with Phase Changes

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 368))

Abstract

First a phase change process in a certain microregion of a material is described in phenomenological terms by the appearance of a transformation tensor which can be interpreted as an eigenstrain tensor or a strain incompatibility. By applying the irreversible thermodynamics of solids the rates of state functions for a material specimen are derived. The integration of these rates allows to establish a condition for the transformation of a microregion by an interface movement. Further a thermodynamic condition for the sudden transformation of a certain microregion is derived. Both considerations lead to an equivalent transformation condition relating a chemical and a mechanical driving force to a transformation and mechanical barrier. This transformation condition is applied to the selection of variants in the case of a displacive transformation demonstrating the orientation effect on a global deformation. The accommodation effect resulting from the transformation volume (and shape) change is investigated for a specimen under a constant external stress state. Extended relations compared to the “classical” solution by Greenwood and Johnson are presented based on a semianalytical concept. Then a more sophisticated incremental procedure is introduced allowing to predict both the orientation effect and the accommodation effect of an ongoing transformation on the global deformation behavior. Proposals for a modified constitutive law for an elasto-plastic material considering a solid phase transformation are neglected.

Finally the concept of both a chemical and mechanical driving force is applied to derive a transformation kinetics relation for a displacive transformation. Here the “classical” phenomenological relations (e.g. by Koistinen and Marburger) are extended by a stress term based on a thermodynamical and micromechanical consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wechsler, M.S., Lieberman, D.S. and T.A. Read: On the theory of the formation of martensite, AIME Trans. J. Metals, 197 (1953), 1503–1515.

    Google Scholar 

  2. Fischer, F.D.: Transformation induced plasticity in triaxially loaded steel specimens subjected to a martensite transformation, Eur. J. Mech. A/Solids, 11 (1992), 233–244.

    Google Scholar 

  3. Fischer, F.D.: A micromechanical model for transformation plasticity in steels, Acta metall. mater., 38 (1990), 1535–1546.

    Article  Google Scholar 

  4. Ball, J.M. and R.D. James: Fine phase mixtures and minimizers of energy, Arch. Rat. Mech. Anal., 100 (1987), 13–52.

    Article  MathSciNet  MATH  Google Scholar 

  5. Nishiyama, Z.: Martensitic Transformation, Academic Press, New York et al. 1978.

    Google Scholar 

  6. Eshelby, J.D.: Energy relations on the energy-momentum tensor in continuum mechanics, in: Inelastic Behavior of Solids (Eds M.F. Kanninen, W.F. Adler, A.R. Rosenfield and R.I. Joffee ), McGraw-Hill, New York 1970, 77–115.

    Google Scholar 

  7. Chadwick, P.: Continuum Mechanics, George Allen & Unwin Ltd., London 1976.

    Google Scholar 

  8. Gautier, E. and A. Simon: Role of internal stress state on transformation induced plasticity and transformation mechanisms during the progress of stress induced phase transformation, in: International Conference on Residual Stresses–ICRS2 (Eds G. Beck, S. Denis and A. Simon ), Elsevier Applied Science, London and New York 1989, 777–783.

    Chapter  Google Scholar 

  9. Fischer, F.D., Berveiller, M., Tanaka, K. and E.R. Oberaigner: Continuum mechanical aspects of phase transformations in solids, Arch. Appl. Mech., 64 (1994), 54–85.

    MATH  Google Scholar 

  10. Levitas, V.I.: Thermomechanics of martensitic phase transitions in elastoplastic materials, Mech. Res. Commun., 22 (1995), 87–94.

    MathSciNet  MATH  Google Scholar 

  11. Gautier, E. and A. Simon: Transformation plasticity mechanisms for martensitic transformation of ferrous alloys, in: Phase Transformations ‘87 (Ed. G.W. Lorimer ), Institute of Metals, London 1988, 285–287.

    Google Scholar 

  12. Patel, J.R. and M. Cohen: Criterion for the action of applied stress in the martensitic transformation, Acta metall., 1 (1953), 531–538.

    Article  Google Scholar 

  13. Marketz, F. and F.D. Fischer: A mesoscale study on the thermodynamic effect of stress on martensitic transformation, Met. Trans., 26A (1995), 267–278.

    Google Scholar 

  14. Kaufman, L. and M. Cohen: Thermodynamics and kinetics of martensitic transformations, in: Progress in Metal Physics (Eds B. Chalmers and R. King), Pergamon Press, London et al. 1958, 165–246.

    Google Scholar 

  15. Magee, C.L.: The nucleation of martensite, in: Phase Transformations (Ed. H. I. Aaronson), ASM, Metals Park 1969, 115–156.

    Google Scholar 

  16. Tanaka, K.: Analysis of recovery stress and cyclic deformation in shape memory alloys, in: Advances in Continuum Mechanics (Eds O. Briller, V. Mannl and J. Najar), Springer-Verlag, Berlin et al. 1991, 441–451.

    Google Scholar 

  17. Fischer, F.D. and S.M. Schlögl: The influence of material anisotropy on transformation induced plasticity in steel subject to martensitic transformation, Mech. Mat., 21 (1995), 1–23.

    Article  Google Scholar 

  18. Greenwood, G.W. and R.H. Johnson: The deformation of metals under small stress during phase transformation, Proc. Royal Soc. London, A 283 (1965), 403–422.

    Article  Google Scholar 

  19. Sattler, H.P. and G. Wassermann: Transformation plasticity during martensitic transformation of iron with 30% Ni, J. Less-Common Met., 28 (1972), 119–140.

    Article  Google Scholar 

  20. Fischer, F.D., Sun, Q.-P. and K. Tanaka: Transformation-induced Plasticity (TRIP), Appl. Mech. Rev., 49 (1996), 317–364.

    Article  Google Scholar 

  21. Franitza, S.: Zur Berechnung der Wärme-und Umwandlungsspannungen in langen Kreiszylindern, PhD Thesis, Techn. Univ. Braunschweig 1972.

    Google Scholar 

  22. Videau, J.-Chr., Cailletaud, G. and A. Pineau: Experimental study of the transformation-induced plasticity in a Cr-Ni-Mo-Al-Ti steel, to be published Proc. MECAMAT 95, J. de Physique IV, Colloque C 1, supplément au J. de Physique III, 6 (1996), C1–465 - C1–474.

    Google Scholar 

  23. Videau, J.-Chr., Cailletaud, G. and A. Pineau: Modélisation des effets mécaniques des transformations de phases pour le calcul des structures, J. de Physique IV, Colloque C3, Supplément au J. de Physique III, 4 (1994), C3227 - C3–232.

    Google Scholar 

  24. Bammann, D.J., Prantil, V.C. and J.F. Lathrop: A model of phase transformation plasticity, in: Modelling of Casting, Welding and Advanced Solidification Processes (Eds M. Cross and J. Campbell ), TMS, Warrendale 1995, 275–285.

    Google Scholar 

  25. Bhattacharyya, A. and G.J. Weng: An energy criterion for the stress-induced martensitic transformation in a ductile system, J. Mech. Phys. Solids, 42 (1994), 1699–1724.

    Article  MATH  Google Scholar 

  26. Simonsson, K: Micro-mechanical FE simulations of the plastic behavior of steels undergoing martensitic transformation, PhD Thesis, Linköping Studies in Science and Technology, Dissertations, No. 362, Linköping 1994.

    Google Scholar 

  27. Marketz, F. and F.D. Fischer: Micromechanical modelling of stress-assisted martensitic transformation, Modelling Simul. Mater. Sci. Eng., 2 (1994), 1017–1046.

    Google Scholar 

  28. Marketz, F. and F.D. Fischer: A micromechanical study of the deformation behavior of Fe-Ni alloys under martensitic transformation, in: Solid-pSolid Phase Transformations (Eds W.C. Johnson, J.M. Howe, D.E. Laughlin and W.A. Soffa ), TMS, Warrendale 1994, 785–790.

    Google Scholar 

  29. Marketz, F. and F.D. Fischer: Micromechanics of transformation-induced plasticity and variant coalescence, J. de Physique IV, Colloque Cl, supplément au J. de Physique III, 6 (1996), C1–445 - C1–454.

    Google Scholar 

  30. Hibbitt, Karlsson & Sorensen Inc., ABAQUS User Manual, Version 5.4, Pawtucket, R. I. 1994.

    Google Scholar 

  31. Koistinen, D.P. and R.E. Marburger: A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels, Acta metall., 7 (1959), 59–60.

    Article  Google Scholar 

  32. Besserdich, G., Scholtes, B., Müller, H. and E. Macherauch: Consequences of transformation plasticity on the development of residual stresses and distorsions during martensitic hardening of SAE 4140 steel cylinders, steel research, 65 (1994), 41–46.

    Google Scholar 

  33. Tanaka, K.: Analysis of transformation superplasticity and shape memory effect, in: Computational Plasticity (Eds T. Inoue, H. Kitigawa and S. Shima), The Society of Mat. Sci., Japan, Current Japanese Materials Research, Vol. 7, Elsevier Applied Science, London 1991, 43–60.

    Google Scholar 

  34. Tanaka, K., Oberaigner, E.R. and F.D. Fischer: Kinetics on the micro-and macro-levels in polycrystalline alloy materials during martensitic transformation, Acta Mech., 116 (1996), 171–186.

    Article  MATH  Google Scholar 

  35. Olson, G.B., Tsuzaki, K. and M. Cohen: Statistical aspects of martensitic transformation, Proc. Mat. Res. Soc. Symp., 57 (1987), 129–147.

    Article  Google Scholar 

  36. Oberaigner, E.R., Fischer, F.D. and K. Tanaka: A new micromechanical formulation of martensite kinetics driven by temperature and/or stress, Arch. Appl. Mech., 63 (1993), 522–533.

    MATH  Google Scholar 

  37. Oberaigner, E.R., Tanaka, K. and F.D. Fischer: The influence of transformation kinetics on stress-strain relations of shape memory alloys in thermomechanical processes, J. Intell. Mat. Sys. Struct., 5 (1994), 474–486.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Wien

About this chapter

Cite this chapter

Fischer, F.D. (1997). Modelling and Simulation of Transformation Induced Plasticity in Elasto-Plastic Materials. In: Berveiller, M., Fischer, F.D. (eds) Mechanics of Solids with Phase Changes. International Centre for Mechanical Sciences, vol 368. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2660-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2660-8_6

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82904-2

  • Online ISBN: 978-3-7091-2660-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics