Micromechanical Modelling of the Thermomechanical Behavior of Shape Memory Alloys

  • E. Patoor
  • M. Berveiller
Part of the International Centre for Mechanical Sciences book series (CISM, volume 368)


In this work we developed a model for the behavior of shape memory alloys based simultaneously on thermodynamical and micromechanical concepts. The basic field equations including moving boundary concepts are recalled and applied to the description of the transformation by discrete internal variables. To point out the different characteristic length scales appearing in shape memory alloys, two models are developed. The first one concerns the behavior of a grain in polycrystalline materials and the second one uses the self-consistent approximation for the intergranular interaction.

The results obtained from this model well agree with the experimental observations. In particular, the model is able to predict the dissymmetry observed during a tensile-compression test as well as the behavior during multiaxial loading. The parameters of the model are identified from experiments only.

For structure calculation applications, we develop also a simplified analytical model using only two internal variables for which some aspects may be identified from the crystallographic model.


Shape Memory Alloy Representative Volume Element Internal Variable Habit Plane Transformation Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Tanaka, S. Kobayashi, Y. Sato, “Thermomechanics of Transformation Pseudoelasticity and Shape Memory Effect in Alloys”, Int. J. Plasticity, Vol. 2, pp. 59–72 (1986).CrossRefGoogle Scholar
  2. 2.
    B. Raniecki, C. Lexcellent, K. Tanaka, “Thermodynamic Models of Pseudoelastic Behaviour of Shape Memory Alloys”, Arch. of Mech., Vol. 3 (1992).Google Scholar
  3. 3.
    A. L. Roytburd, “Elastic Domains and Polydomain Phases in Solids”, Phase Transitions, Vol. 45, pp. 1–33 (1993).CrossRefGoogle Scholar
  4. 4.
    K. Bhattacharya, “Comparison of the geometrically nonlinear and linear theories of martensitic transformation”, Continuum Mechanics and thermodynamics, Vol. 5, pp. 205–242 (1993).MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    J. M. Ball, R. D. James, “Fine phase mixtures as minimisers of elastic energy”, Archive for Rational Mechanics, Vol. 100, pp. 13–52 (1987).MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    N. Ono, A. Sato, “Plastic Deformation Governed by the Stress Induced Martensitic Transformation in Polycristals”, Trans. Japan Inst. of Metals, Vol. 29, No. 4, pp. 267–273 (1988).Google Scholar
  7. 7.
    Q. P. Sun, K. C. Hwang, S. W. YU, “A Micromechanics Constitutive Model of Transformation Plasticity with Shear and Dilatation Effect”, J. Mech. Phys. Solids, Vol. 9, No. 4, pp. 507–524 (1991).CrossRefGoogle Scholar
  8. 8.
    E. Patoor, A. Eberhardt, M. Berveiller, “Thermomechanical Behaviour of Shape Memory Alloys”, Arch. of Mech., Vol. 40, No. 5–6, pp. 775–794 (1988).Google Scholar
  9. 9.
    Y. H. Wen, S. Denis, E. Gautier, “Criterion for the progress of martensitic transformation in a finite element simulation, Journal de Physique IV, Vol. 5 pp. C2–531–536 (1995).Google Scholar
  10. 10.
    K. Simonsson, “Micromechanical finite element simulations of the plastic behavior of steels undergoing martensitic transformation”, Ph D Thesis, Linköping, Studies in Sciences and Technology Dissertations N° 362, Linköping (1994).Google Scholar
  11. 11.
    L. Delaey, “Diffusionless Transformations”, chapter 6 in Materials Science and Technologies Vol. 5: Phase Transformations in Materials Ed. R. W. Cahn, P. Haasen, E. J. Kramen, Ed. Vch Publishers, Isbn 3–527–26818–9, pp. 339–404 (1991).Google Scholar
  12. 12.
    M. Cohen, “Martensitic transformations in material science and engineering”, Transactions of the Japan Institute of Metals, Vol. 39, No. 8, pp. 609–624 (1988).Google Scholar
  13. 13.
    G. Guénin, “Alliages à mémoire de forme”, in Techniques de l’ingénieur M 530 (1986).Google Scholar
  14. 14.
    J. D. Eshelby, “Elastic Inclusions and Inhomogeneities”, in Progress in Solids Mechanics (Ed. I. N. Sneddon, R. Hill), Vol. 2, North-Holland, Amsterdam, pp. 87–140 (1961).Google Scholar
  15. 15.
    E. Kroner, “Zur Plastischen Verformung des Vielkristalls”, Acta metall., Vol. 9, pp. 155–161 (1961).CrossRefGoogle Scholar
  16. 16.
    M. S. Wechsler, D. S. Lieberman, T. A. Read, ” On the Theory of the Formation of Martensite”, T.ans. Aime, Vol. 197, pp. 1503–1515 (1953).Google Scholar
  17. 17.
    C. M. Wayman, Introduction to the crystallography of martensitic transformations MacMillan Series in Materials Science, New York (1966).Google Scholar
  18. 18.
    E. Kroner, “Modified Green functions in the theory of heterogeneous and/or anisotropic elastic media”, in Micromechanics and inhomogeneity (Ed. Weng, Taya), Vol. 2, Springer Verlag (1989).Google Scholar
  19. 19.
    M. Berveiller, A. Zaoui, “Modelling of the Plastic Behavior of Inhomogeneous Media”, J. Engng. Mat. and Technology, No. 106, pp. 295–299 (1984).CrossRefGoogle Scholar
  20. 20.
    T. Mori, K. Tanaka, “Average stress in matrix and average energy of materials with misfitting inclusions”, Acta metall., Vol. 21, pp. 571–574 (1973).CrossRefGoogle Scholar
  21. 21.
    O. Fassi Fehri, A. Hihi, M. Berveiller, “Elastic Interactions Between Variants in Pseudoelastic Single Crystals”, Scripta Met., Vol. 21, pp. 771 (1987).CrossRefGoogle Scholar
  22. 22.
    P. H. Dederichs, R. Zeller, “Elastische konstanten vor vielkristallen”, Report of Kfa, 877-FF (1972).Google Scholar
  23. 23.
    J. Hadamard, Leçons sur la propagation des ondes et les équations de l’hydrodynamique Cours du Collège de France, Librairie Scientifique A. Hermann, Paris (1903).Google Scholar
  24. 24.
    J. R. Patel, M. Cohen, “Criterion for the action of applied stress in the martensitic. transformation”, Acta metall., Vol. 1, pp. 531–538 (1953).CrossRefGoogle Scholar
  25. 25.
    E. Patoor, A. Eberhardt, M. Berveiller, “Potentiel pseudoélastique et plasticité de transformation martensitique dans les mono et polycristaux métalliques”, Acta metall., Vol. 35, pp. 2779–2789 (1987).CrossRefGoogle Scholar
  26. 26.
    G. Edwards, J. Perkins, “Suggestions for ‘Applying a Phenomenological Approach to Investigations of Mechanical Behavior in Sme Alloys”, in Shape Memory Effects in Alloys (Ed. J. Perkins) Plenum Press, Isbn 0–306–30891–6, pp. 445 – 449 (1975).Google Scholar
  27. 27.
    J. Bohong, T. Y. Hsu (XU Zuyao), “Influence of Order, Grain Size and Pre-Strain on Shape Memory Effect in Cu-Zn-Al Alloys”, Procs. Icomat’89, Materials Science Forum, Vols. 56–58, pp. 457–462 (1990).CrossRefGoogle Scholar
  28. 28.
    L Moller, K. Wilmanski, “A Model for Phase Transition in Pseudoelastic Bodies”, Il Nuevo Cimento, Vol. 57B, pp. 283, (1980).CrossRefGoogle Scholar
  29. 29.
    F. Falk, “Model Free Energy, Mechanics and Thermodynamics of Shape Memory Alloys”, Acta metall., Vol. 28, pp. 1773–1780 (1980).CrossRefGoogle Scholar
  30. 30.
    R. D. James, “Displacive Phase Transformations in Solids”, J. Mech. Phys. Solids, Vol. 34, No. 4, pp. 359–394 (1986).CrossRefMATHGoogle Scholar
  31. 31.
    L. C. Brinson, “One-dimensional Constitutive Behavior of Shape Memory Alloys: Thermomechanical Dérivation with Non-constant Material Functions and Redefined Martensite Internal Variable”, J. of Intell. Mater. Syst. and Struct., Vol. 4, pp. 229242 (1993).Google Scholar
  32. 32.
    J. G. Boyd, D. C. Lagoudas, “A Constitutive Model for Simultaneous Transformation and Reorientation in Shape Memory Materials”, Procs. Asme, Amd-Vol. 189/Pvp-Vol. 292, Mechanics of phase transformations and shape memory alloys, pp. 159–172 (1994).Google Scholar
  33. 33.
    E. Patoor, M. O. Bensalah, A. Eberhardt, M. Berveiller, “Détermination du comportement thermomécanique des alliages à mémoire de forme par minimisation d’un potentiel thermodynamique”, La Revue de Métallurgie, pp. 15871592 (1992).Google Scholar
  34. 34.
    Z. Moumni, “Sur le modélisation de changement de phase solide: application aux matériaux à mémoire de forme et à l’endommagement fragile partiel”, Thèse de doctorat, E. N. P. C. (1995).Google Scholar
  35. 35.
    Z. Moumni, Q. S. Nguyen, “A Model of Materials with Phase Change and Applications”, Journal de Physique IV, Vol. 6 pp. C1–335–345 (1996).Google Scholar
  36. 36.
    J. R. Rice, “ Inelastic Constitutive Relation for Solids: an Internal Variable Theory and its Application to Metal Plasticity, J. Mech. Phys. Solids, Vol. 19, pp. 433455 (1971).Google Scholar
  37. 37.
    J. W. Christian, “Deformation by Moving Interfaces”, Metall. Trans. A, Vol. 13A, pp. 509–538 (1982).Google Scholar
  38. 38.
    E. Patoor, M. O. Bensalah, A. Eberhardt, M. Berveiller, “Micromechanical Aspects of the Shape Memory Behaviour”, Procs. Icomat’92, Monterey (CA), Usa, pp. 401–406 (1993).Google Scholar
  39. 39.
    E. Patoor, A. Eberhardt, M. Berveiller, “Micromechanical Modelling of Superelasticity in Shape Memory Alloys”, Pitman Research Notes in Mathematics Series, Vol. 296, pp. 38–54 (1993).MathSciNetGoogle Scholar
  40. 40.
    M. Berveiller, J. Morreale, E. Reubrez, “Comportement élastoplastique des aciers lors de la mise en forme: théorie micromécanique, simulations numériques et résultats expérimentaux”, Revue Européennes des éléments finis, Vol. 3, No. 4, pp. 491–514 (1994).MATHGoogle Scholar
  41. 41.
    E. Patoor, A. Eberhardt, M. Berveiller, “Micromechanical Modelling of the Shape Memory Behavior”, Proc. Asme Wam ‘94, Chicago, IL (Usa), Amd- Vol. 189/Pvd- Vol. 292, pp. 23–37 (1994).Google Scholar
  42. 42.
    E. Patoor, A. Eberhardt, M. Berveiller, “Micromechanical modelling of superelasticity in shape memory alloys”, Journal de Physique IV, Vol. 6 pp. Cl-277–292 (1996).Google Scholar
  43. 43.
    K. Adachi, J. Perkins, C. M. Wayman, “The Crystallography and Boundary Structure of Interplate-Group Combinations of 18R Martensite Variant in Cu-Zn-Al Shape Memory Alloy”, Acta metal, Vol. 36, No. 5, pp. 1343–1364 (1988).CrossRefGoogle Scholar
  44. 44.
    R. Hill, “Continuum microniechanics of elastoplastic polycrystals”, J. Mech. Phys. Solids., Vol. 13, pp. 89–101 (1965).CrossRefMATHGoogle Scholar
  45. 45.
    A. Zaoui, “Macroscopic Plastic Behaviour of Microhomogeneous Materials”, in “Plasticity Today” (Ed. A. Sawczuk, J. Bianchi), Ed. Elsevier, pp. 451–469 (1985).Google Scholar
  46. 46.
    E. Patoor, M. O. Bensalah, A. Eberhardt, M. Berveiller, “Détermination du comportement thermomécanique des alliages à mémoire de forme par minimisation d’un potentiel thermodynamique”, La Revue de Métallurgie, pp. 1587–1592 (1992).Google Scholar
  47. 47.
    P. H. Dederichs, R. Tftler, “Variational Treatment of the Elastic Constants of Desordered Materials, Z. Phys., Vol. 259, pp. 103 (1973).CrossRefGoogle Scholar
  48. 48.
    P. Lipinski, J. Krier, M. Berveiller, “Elastoplasticité des métaux en grandes déformations: comportement global et évolution de la structure interne”, Rev. Phys. Appl., Vol. 25, pp. 361–388 (1990).CrossRefGoogle Scholar
  49. 49.
    J. DE Vos, E. Aernoudt, L. Delaey, “The Crystallography of the Martensitic Transformation of B. C. 0 into 9R a Generalized Mathematical Model”, Z. Metallkde, B.. 69, H7, pp. 438–444 (1978).Google Scholar
  50. 50.
    D. Entemeyer, E. Patoor, A. Eberhardt, M. Berveiller, “Micromechanical modelling of the superelastic behavior of materials undergoing thermoelastic phase transition”, Journal de Physique IV, Vol. 5 pp. C8–233–238 (1995).Google Scholar
  51. 51.
    K. Shimizu, K. Otsuka, “Optical and electron microscope observations of transformation and deformation characteristics in Cu–Al–Ni marmem Alloys”, in Shape Memory Effects in Alloys (Ed. J. Perkins) Plenum Press, Isbn 0–30630891–6, pp. 59 – 87 (1975).Google Scholar
  52. 52.
    L. Delaey, F. Van DE Voorde, R. V. Krishnan, “Martensitic formation as a deformation process in polycrystalline Copper–Zinc based Alloys”, in Shape Memory Effects in Alloys (Ed. J. Perkins) Plenum Press, Isbn 0–306–30891–6, pp. 351 – 364 (1975).Google Scholar
  53. 53.
    E. Patoor, M. EL Amrani, A. Eberhardt, M. Berveiil. ER, “Determination of the Origin for the Dissymmetry Observed Between Tensile and Compression Tests on Shape Memory Alloys”, Journal de Physique IV, Vol. 5, pp. C2–495–500 (1995).Google Scholar
  54. 54.
    P. Vacher, C. Lexcf, JJ. Ent, “Study of Pseudoelastic Behaviour of Polycrystallin Shape Memory Alloys by Resistivity Measurement and Acoustic Emission”, Procs. Icm 6, Kyoto, Japan, pp. 231–236 (1991).Google Scholar
  55. 55.
    P. Y. Manach, “Etude du comportement thermomécanique d’alliages à mémoire de forme NiTi, , Thèse de doctorat, Institut National Polytechnique de Grenoble, France (1992).Google Scholar
  56. 56.
    Y. Gillet, E. Patoor, M. Berveiller, “Structure calculation applied to Shape Memory Alloys”, Journal de Physique IV, Vol. 5, pp. C2–343–348 (1995).Google Scholar
  57. 57.
    C. Rogueda, “Modélisation thermodynamique du comportement pseudoélastique des alliages It mémoire de forme”, Thèse de doctorat, Université de Franche-Comté, Besançon (1993).Google Scholar
  58. 58.
    M. EL Amrani Zirifi, “Contributions It l’étude micromécanique des transformations martensitiques the rmoélastiques”, Thèse de doctorat, Université de Metz, France, 1994.Google Scholar
  59. 59.
    G. Bourbon, C. Lexcellent, S. Leclercq, “Modelling of the non isothermal cyclic behaviour of a polycrystalline Cu–Zn–Al shape memory alloy”, Journal de Physique IV, Vol. 5, pp. C8–221–226 (1995).Google Scholar

Copyright information

© Springer-Verlag Wien 1997

Authors and Affiliations

  • E. Patoor
    • 1
  • M. Berveiller
    • 1
  1. 1.CNRS URA 1215MetzFrance

Personalised recommendations