Advertisement

Experimental Observations for Shape Memory Alloys and Transformation Induced Plasticity Phenomena

  • E. Gautier
  • E. Patoor
Part of the International Centre for Mechanical Sciences book series (CISM, volume 368)

Abstract

This chapter deals with the general aspects related to shape memory alloys and the TRIP phenomena. These two kinds of behavior originate from a particular solid-solid phase transformation: the martensitic transformation.

First two parts of this chapter present the typical characteristics of this first order diffusionless and displacive transformation. Differences between thermoelastic and non thermoelastic martensitic transformation are underlined. In the third part the different behaviors observed in shape memory alloys are detailed (superelasticity, one way shape memory, two way shape memory, rubberlike effect and damping capacity). Physical strain mechanisms at the origin of these behaviors are defined. The last section is devoted to TRIP phenomena. Respective importance of nucleation and growth of martensite plates are discussed in this case. Plate morphology modifications related to evolution in the Bain strain accommodation mechanism in presence of an applied stress are pointed out.

Keywords

Martensitic Transformation Shape Memory Shape Memory Alloy Habit Plane Shape Memory Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Maddin, “A History of Martensite: Some Thoughts on the Early Hardening of Iron”, Chapter 2, “Martensite”, (Eds. G.B. Olson, W.S. Owen) Asm International, pp. 11–19 (1992).Google Scholar
  2. 2.
    Z. Nisityama, “Martensitic Transformation”, Academic Press (1978).Google Scholar
  3. 3.
    J.S. Bowles, C.M. Wayman, “The Bain Strain, Lattice Correspondances and Deformations Related to Martensitic Transformations”, Metall. Trans. Vol. 3, pp. 1113–1121 (1972).Google Scholar
  4. 4.
    L. Kaufman, M. Cohen, “Martensitic Transformations”, in Progress in Metal Physics 7, (Eds. B. Chalmers and R. King), Pergamon Press, pp. 165–246 (1958).Google Scholar
  5. 5.
    J. DE Vos, E. Aernoudt, L. Delaey, “The Crystallography of the Martensitic Transformation of B. C. C into 9R a Generalized Mathematical Model”, Z. Metallkde, B.. 69, H7, pp. 438–444 (1978).Google Scholar
  6. 6.
    L. Delaey, “Diffusionless Transformations”, chapter 6 in Materials Science and Technologies, Vol. 5: Phase Transformations in Materials, (Eds. R.W. Cahn, P. Haasen, E.J. Kramen) Ed. Vch Publishers, Isbn 3–527–26818–9, pp. 339–404 (1991).Google Scholar
  7. 7.
    M. S. Wechsler, D. S. Lieberman, T. A. Read, “On the Theory of the Formation of Martensite”, Trans Aime, Vol. 197, pp. 1503–1515 (1953).Google Scholar
  8. 8.
    J.S Bowles, J.K. Mackenzie, “The crystallography of martensitic transformations 1 and II”, Acta Metall., Vol. 2, pp. 129–137 and 138–147 (1954).Google Scholar
  9. 9.
    K. Otsuka, “Crystallography of Martensitic Transformations and Lattice Invariant Shears”, Materials Science Forum, Vols. 56–58, pp. 393–404 (1990).CrossRefGoogle Scholar
  10. 10.
    K. Bhattacharya, “Comparison of the geometrically nonlinear and linear theories of martensitic transformation”, Continuum Mech. Thermodyn, Vol. 5, pp. 205–242 (1993)MATHGoogle Scholar
  11. 11.
    A. L. Roytburd, M.N. Pankova; “Effect of external stresses on habitus orientation and substructure of stress-induced martensite plates in ferrous alloys”, Phys. Met. Metall.,’Vol. 59, pp. 131–140 (1985).Google Scholar
  12. 12.
    J.M. Ball, R.D. James, “Fine Phase Mixture as Minimizers of Energy”, Arch. for Rational Mechanics and Analysis, Vol. 100, pp. 13–52 (1987).MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    T. Saburi, C.M. Wayman, K. Takata, S. Nenno, “ The Shape Memory Mechanism in 18R Martensitic Alloys”, Acta metall., Vol. 28, pp. 15–32 (1980).CrossRefGoogle Scholar
  14. 14.
    J.W. Christian, “Deformation by Moving Interfaces”, Metall. Trans. A, Vol. 13A, pp. 509–538 (1982).Google Scholar
  15. 15.
    V. Raghavan, “Kinetics of Martensite Transformation”, Chapter 11, “Martensite”, (Eds. G.B. Olson, W.S. Owen) Asm International, pp. 197–225 (1992).Google Scholar
  16. 16.
    M. Ahlers, “On the Stability of the Martensite in ß-Cu-Zn Alloys”, Scripta Met.,Vol. 8, pp. 213–216 (1974).CrossRefGoogle Scholar
  17. 17.
    K.W. Andrews, “Empirical Formulae for the Calculation of Transformation Temperatures”, Journal of the Iron and Steel Institute, Vol. 203, No. 7, pp. 721727 (1965).Google Scholar
  18. 18.
    J.L. Macqueron, M. Morin, G. Guenin, A. Planes, J. Elgueta, T. Castan, “Atomic Ordering and Martensitic Transition in a Cu–Zn–Al Shape Memory Alloy”, Journal de Physique IV, Coll. C4, Vol. 1, No. 9, pp. C4–259–263 (1991).Google Scholar
  19. 19.
    P. Wollants, M. DE Bonte, J.R. Ross, “A Thermodynamic Analysis of the Stress-Induced Martensitic Transformation in a Single Crystal”, Z. Metallkde, Bd. 70, H. 2, pp. 113–117 (1979).Google Scholar
  20. 20.
    G.B. Olson, M. Cohen, “Stress Assisted Isothermal Martensitic Transformation: Application to TRIP Steels”, Metall. Trans. A, Vol. 13A, pp. 1907–1914 (1982).Google Scholar
  21. 21.
    M. Grujicic, H.C. Ling, D.M. Haezebrouck, W.S. Owen, “The Growth of Martensite”, Chapter 10, “Martensite”, (Eds. G.B. Olson, W.S. Owen) Asm International, pp. 175–196 (1992).Google Scholar
  22. 22.
    G.B. Olson, M. Cohen, “Thermoelastic Behavior in Martensitic Transformations”, Scripta Met., Vol. 9, pp. 1247–1254 (1975).CrossRefGoogle Scholar
  23. 23.
    M. Cohen, “Martensitic Transformations in Material Science and Engineering”, Transactions of the Japan Institute of Metals, Vol. 39, No. 8, pp. 609–624 (1988).Google Scholar
  24. 24.
    M. Ahlers, P. Pascal, R. Rapacioli, “Transformation Hardening and Energy Dissipation in Martensitic l3-Brass”,Materials Science and Engineering, Vol. 27, pp. 49–55 (1977).Google Scholar
  25. 25.
    F.C. Lovey, A. Amengual, V. Torra, M. Ahlers, “On the Origin of the Intrinsic Thermoelasticity Associated with a Single-Interface Transformation in CuZn-Al Shape Memory Alloys”, Phil. Mag. A, Vol. 61, No. 1, pp. 159–165 (1990).CrossRefGoogle Scholar
  26. 26.
    A. Chrysochoos, H. Pham, O. Maisonneuve, “Une analyse expérimentale du comportement thermomécanique d’un alliage d mémoire de forme de type Cu-ZnAl”, C.R. Acad. Sci. Paris, t. 316, Série II, pp. 1031–1036 (1993).Google Scholar
  27. 27.
    K. Otsuka, C.M. Wayman, K. Nakai, H. Sakamoto, K. Shimizu, “Superelasticity Effects and Stress-Induced Martensitic Transformations in Cu-Al-Ni Alloys”, Acta metall., Vol. 24, pp. 207–226 (1976).CrossRefGoogle Scholar
  28. 28.
    K. Shimizu, “Ageing and Thermal Cycling Effects in Shape Memory Alloys”, J. Electron Microsc., Vol. 34, No. 4, pp. 277–288 (1985).Google Scholar
  29. 29.
    J.E. Reynolds, M.B. Bever, “On the Reversal of the Strain Induced Martensitic Transformation in the Copper-Zinc System”, Journal of Metals, pp. 1065 (1952).Google Scholar
  30. 30.
    E. Patoor, A. Eberhardt, M. Berveiller, “Potentiel pseudoélastique et plasticité de transformation martensitique dans les mono et polycristaux métalliques”, Acta metall., Vol. 35, pp. 2779–2789 (1987).CrossRefGoogle Scholar
  31. 31.
    H. Sakamoto, “Fatigue Behavior of Monocrystalline Cu-Al-Ni Shape Memory Alloys under Various Deformation Modes”, Trans. of the Japan inst. of Metals, Vol. 24, No. 10, pp. 665–673 (1983).Google Scholar
  32. 32.
    J. Perkins, “Residual Stresses and the Origin of Reversible (Two-Way) Shape Memory Effect”, Scripta Met., Vol. 8, pp. 1469–1476 (1974).CrossRefGoogle Scholar
  33. 33.
    L. Contardo, G. GUÉNin, “Training and Two Way Memory Effect in Cu-Zn-Al Alloy”, Acta metal. mater., Vol. 38, No. 7, pp. 1267–1272 (1990).CrossRefGoogle Scholar
  34. 34.
    D. Rios Jara, G. Guenin, “On the Characterization and Origin of the Dislocations Associated with the Two-Way Memory Effect in Cu-Zn-Al Thermoelastic Alloys”, Acta metall., Vol. 35, pp. 109–119 et pp. 121–126 (1987).Google Scholar
  35. 35.
    R. Stalmans, J. Van Humbeeck, L. Delaey, “ The Two Way Memory Effect in Copper-Based Shape Memory Alloys–Thermodynamics and Mechanisms”, Acta metall. mater., Vol. 40, No. 11, pp. 2921–2931 (1992).CrossRefGoogle Scholar
  36. 36.
    P. Rodriguez, G. GUÉNin, “Stability of the Two Way Memory Effect During Thermal Cycling of High M s Temperature Cu-Al-Ni Alloy”, Material Science Forum, Vol. 56–58, No. 7, pp. 541–546 (1990).CrossRefGoogle Scholar
  37. 37.
    A. Olander, “An Electrochemical Investigation of Solid Cadnium-Gold Alloys”, Journal of the American Chemical Society, Vol. 54, pp. 3819–3833 (1932).CrossRefGoogle Scholar
  38. 38.
    J. Stoiber, J. Van Humbeeck, R. Gotthardt, “Hysteresis Effects During Martensitic Transformation in a Cu-Zn-Al Studied by Internal Friction Measurements”, Material Science Forum., Vol. 56–58, No. 7, pp. 505–510 (1990).CrossRefGoogle Scholar
  39. 39.
    J.R. Patel, M. Cohen, “Criterion for the Action of Applied Stress in the Martensitic Transformation” Acta Metall. Vol 1, pp. 531–538 (1953)CrossRefGoogle Scholar
  40. 40.
    M. Pankova, A. L. Roytburd, “Orienting Influence of Applied Stress on the Martensitic Transformation in Alloys Based on Iron” Phys. Met. Metall., Vol. 58, pp. 81–90 (1984).Google Scholar
  41. 41.
    E. Gautier, A. Simon, G. Colletrh, G. Beck, “Effect of Stress and Strain on Martensitic Transformation in a Fe-Ni-Mo-C Alloy with a High M s Temperature” Journal de Physique Colloque C4, Vol.43, pp. C4 473–477 (1982).Google Scholar
  42. 42.
    E. Aeby-Gautier, “Transformation perlitique et martensitique sous contrainte dans les aciers”, Thèse de Doctorat d’Etat ès Sciences Physiques, Institut National Polytechnique de Lorraine, Nancy, France (1985).Google Scholar
  43. 43.
    G.B. Olson, M. Cohen, “Kinetics of Strain Induced Martensitic Nucleation” Metall. Trans. A, Vol. 6A, pp. 791–795 (1975).Google Scholar
  44. 44.
    F. Lecroisey, A. Pineau, “Martensitic Transformations Induced by Plastic Deformation in the Fe-Ni-Cr-C System”, Met. Trans., Vol 3, pp. 387–396 (1972).Google Scholar
  45. 45.
    F. Lecroisey, “Transformations martensitiques induites par déformation plastique dans le système Fe-Ni-Cr-C”, Thèse de Doctorat ès Sciences Physiques, Université de Nancy I (1971).Google Scholar
  46. 46.
    H. Onodera, I. Tamura, “Effect of Stress and Strain on Deformation Induced Martensitic Transformation in Austenitic Steels”, Proc. U.S. Japan Seminar on Mechanical Behavior of Metals and Alloys Associated with Displacive Tansformation Try, NY, p. 24 (1979).Google Scholar
  47. 47.
    J. Zhang, ”Influence de la contrainte sur la transformation martensitique d’alliages Fe-Ni-C”, Thèse de Doctorat de l’Institut National Polytechnique de Lorraine, Nancy (1993).Google Scholar
  48. 48.
    E. Gautier, A. Simon, G. Beck, “Martensitic Transformation Kinetics during Anisothermal Creep and Tensile Tests”, Proc. Icomat 1986, The Japon Institute of Metals, pp. 503–508 (1986).Google Scholar
  49. 49.
    I. Tamura, C. M. Wayman, “Martensitic Transformations and Mechanical Effects in Martensite”, Chapter 12, “Martensite”, (Eds. G.B. Olson, W.S. Owen) Asm International, pp. 227–242 (1992).Google Scholar
  50. 50.
    R.G. Stringfellow, D.M. Parks, G.B. Olson, “A Constitutive Model for Transformation Plasticity Accompaying Strain-Induced Martensitic Transformations in Metastable Austenitic Steels”, Acta metall. mater., Vol. 40, pp. 1703–1716 (1992).CrossRefGoogle Scholar
  51. 51.
    C.L. Magee, Ph D Thesis, Carnegie Mellon University (1966).Google Scholar
  52. 52.
    E. Gautier, X.M. Zhang, A. Simon, “Role of Internal Stress State on Transformation Induced Plasticity and Transformation Mechanisms during the Progress of Stress Induced Martensitic Transformation”, Proc. Icrs2, Eds. G. Beck, S. Denis, A. Simon (Elsevier Applied Science) pp. 777–782 (1988).Google Scholar
  53. 53.
    N.S. Kosenko, A. L. Roytburd, L.G. Khandros, “Thermodynamics and Morphology of Martensitic Transformations under External Stress”, Phys. Met. Metall., Vol. 44, pp. 48–55 (1979).Google Scholar
  54. 54.
    A. L. Roytburd, “Deformation through Transformations”, Journal de Physique IV, Colloque Cl, sup. Journal de Physique III, Vol 6, pp. Cl 10–25 (1996).Google Scholar
  55. 55.
    M. DE Jong, G.W. Rathenau, “Mechanical Properties of Iron and some Iron Alloys while undergoing Allotropic Transformation”, Acta Metall., Vol. 7, pp. 246253 (1959)Google Scholar
  56. 56.
    M. DE Jong, G.W. Rathenau, “Mechanical Properties of an Iron Carbon Alloy during Allotropic Transformation”, Acta Metall., Vol. 9, pp. 714–720 (1961).CrossRefGoogle Scholar
  57. 57.
    G.W. Greenwood, R.H. Johnson, “The Deformation of Metals under Small Stresses during Phase Transformations”, Proc. R. Soc., Vol. 283A, p. 403 (1965).CrossRefGoogle Scholar
  58. 58.
    E. Gautier, A. Simon, G. Beck, “Plasticité de transformation durant la transformation perlitique d’un acier eutectoïde”, Acta Metall., Vol. 35, p. 1367 (1987).CrossRefGoogle Scholar
  59. 59.
    A. L. Roytburd, G.V. Kurdjumov, “The Nature of Martensitic Transformation”, Materials Science and Engineering, Vol. 39, pp. 141–167 (1979).CrossRefGoogle Scholar
  60. 60.
    T. Narutani, G.B. Olson, M. Cohen, “Constitutive Flow Relations for Austenitic Steels During Strain-Induced Martensitic Transformation”, J. de Physique, Vol. 43, pp. C4 429–434 (1982).Google Scholar
  61. 61.
    J.S. Zhang, E. Gautier, A. Simon, “Reversible and Irreversible Transformation Plasticity Deformations in Fe-Ni-c Alloys”, Proc. Icomat 1992, Monterey Institute of Advanced Studies, pp. 503–508 (1992).Google Scholar
  62. 62.
    E. Gautier, J.S. Zhang, X.M. Zhang, “Martensitic Transformation under Stress in Ferrous Alloys. Mechanical Behavior and Resulting Morphologies”, Journal de Physique IV, Colloque C8, sup. Journal de Physique III, Vol 5, pp. C8 41–50 (1995).Google Scholar
  63. 63.
    J.C.Videau, G. Cailletaud, A. Pineau, “Experimental Study of the Tansformation Plasticity in a Cr-Ni-Mo-Al-Ti Steel”, Journal de Physique IV, Colloque Cl, sup. Journal de Physique III, Vol 6, pp. Cl 465–474 (1996).Google Scholar
  64. 64.
    X.M. Zhang, E. Gautier, A. Simon, “Martensite Morphology and Habit Plane Transitions during Tensile Tests for Fe-Ni-C Alloys”, Acta metall., Vol. 37, pp 477487 (1989).Google Scholar
  65. 65.
    X.M. Zhang, D.F. Li, Z.S. Xing, E. Gautier, J.S. Zhang, A. Simon, “Morphological Transitions of Deformation Induced Lenticular Martensite in Fe-NiC Alloys”, Acta metall. mater., Vol. 41, pp. 1683–1689 (1993).CrossRefGoogle Scholar
  66. 66.
    X.M. Zhang, T.R. Hu, X.M. Meng, Y.Y. LI, E. Gautier, J.S. Zhang, “Transformation Mechanisms of Deformation-Induced Compact Martensite in Fe-NiC Alloys”, Journal de Physique IV, Colloque C8, sup. au Journal de Physique III, Vol 5, pp. C8 41–50 (1995).Google Scholar

Copyright information

© Springer-Verlag Wien 1997

Authors and Affiliations

  • E. Gautier
    • 1
  • E. Patoor
    • 2
  1. 1.CNRS URA 159NancyFrance
  2. 2.CNRS URA 1215MetzFrance

Personalised recommendations