Thermodynamics and Kinetics of Phase Transitions

An Introduction
  • J. Ortin
Part of the International Centre for Mechanical Sciences book series (CISM, volume 368)


This work presents an introduction to the thermodynamics and kinetics of first-order and continuous phase transitions. In the first three sections both types of transitions are described in the framework of classical equilibrium thermodynamics, as well as using a relatively simple version of Landau’s phenomenological approach. Section 4 introduces the statistical mechanics approach to phase transitions, making use of reticular models. Finally, in section 5, reticular models are used to study two different non-equilibrium aspects of phase transitions: the dynamics of domain growth and the dynamics of avalanches and hysteresis in first-order phase transitions.


Phase Transition Ising Model Critical Exponent Universality Class Landau Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Zemansky, M.W. and Dittmann, R.H.: Heat and Thermodynamics, McGraw-Hill, London 1981.Google Scholar
  2. [2]
    Callen, H.B.: Thermodynamics, John Wiley and Sons, New York 1960.zbMATHGoogle Scholar
  3. [3]
    Stanley, H.E.: Introduction to Phase Transitions and Critical Phenomena, Oxford University Press, Oxford 1971.Google Scholar
  4. [4]
    Huang, K.: Statistical Mechanics, John Wiley and Sons, New York 1987.zbMATHGoogle Scholar
  5. [5]
    Yeomans, J.M.: Statistical Mechanics of Phase Transitions, Clarendon Press, Oxford 1993.Google Scholar
  6. [6]
    Binney, J.J.; Dowrick, N.J., Fisher, A.J. and Newman, M.E.J.: The Modern Theory of Critical Phenomena, Clarendon Press, Oxford 1992.Google Scholar
  7. [7]
    Langer, J.S.: An Introduction to the kinetics of First-Order Phase Transitions, in: Solids far from Equilibrium (Ed. C.Godrèche), Cambridge University Press, Cambridge 1992, 297–363.Google Scholar
  8. [8]
    Sethna J.P., Dahmen K., Kartha S., Krumhansl J.A., Roberts B.W. and. Shore J.D.: Hysteresis and hierarchies: dynamics of disorder-driven first-order phase transformations, Phys. Rev. Lett. 70 (1993), 3347–3350.CrossRefGoogle Scholar
  9. [9]
    Falk, F.: Model free energy, mechanics and thermodynamics of shape-memory alloys, Acta Metall. 28 (1980), 1773–1780.CrossRefGoogle Scholar
  10. [10]
    Toledano, J.C. and Toledano, P.: The Landau Theory of Phase Transitions, World Scientific Publ. Co., Singapore 1987.Google Scholar
  11. [11]
    Nakanishi, N., Mori, T., Miura, S., Murakami, Y. and Kachi, S.: Pseudoelasticity in Au-Cd thermoelastic martensite, Phil. Mag. 28 (1973), 277–292.CrossRefGoogle Scholar
  12. [12]
    Wilson, K.G.: The renormalization group and critical phenomena, Rev. Mod. Phys. 55 (1983), 583–600.CrossRefGoogle Scholar
  13. [13]
    Guggenheim, E.A.: The principle of corresponding states, J. Chem. Phys. 13 (1945), 253–261.CrossRefGoogle Scholar
  14. [14]
    Heller, P. and Benedek, G.B.: Nuclear magnetic resonance in MnF2 near the critical point, Phys. Rev. Lett. 8 (1962), 428–432.CrossRefGoogle Scholar
  15. [15]
    Thompson, D.R. and Rice, O.K.: Shape of the coexistence curve in the perfluoromethylcyclohexane-carbon tetrachloride system. II. Measurements accurate to 0.0001°, J. of the Am. Chem. Soc. 86 (1964), 3547–3553.CrossRefGoogle Scholar
  16. [16]
    Onsager, L.: Crystal statistics. I. A two-dimensional model with an order-disorder transition, Phys. Rev. 65 (1944), 117–149.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    Porter, D.A. and Easterling, K.E.: Phase Transformations in Metals and Alloys, Van Nostrand Reinhold, Wokingham 1981.Google Scholar
  18. [18]
    Allen, S.M. and Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall. 27 (1979), 1085–1095.Google Scholar
  19. [19]
    Vives, E., Ortin, J., Manosa, L., Ràfols, I., Pérez-Magrané, R. and Planes, A.: Distribution of avalanches in martensitic transformations, Phys. Rev. Lett. 72 (1994), 1694–1697;CrossRefGoogle Scholar
  20. Meisel, L.V. and Cote, P.J.: Power laws, flicker noise and the Barkhansen effect, Phys. Rev. B, 46 (1992), 10822–10828;CrossRefGoogle Scholar
  21. Field, S., Witt, J., Nori, F. and Ling X.: Superconducting vortex avalanches, Phys. Rev. Lett. 74 (1995), 1206–1209.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1997

Authors and Affiliations

  • J. Ortin
    • 1
  1. 1.University of BarcelonaBarcelonaSpain

Personalised recommendations