Skip to main content

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 366))

Abstract

This paper will discuss examples of supersonic aerodynamic shape optimization as developed for Daimler-Benz Aerospace Airbus by Synaps, Inc.

First, we will introduce a general approach to aerodynamic shape design based on minimization of energy consumption during aircraft life while considering realistic constraints on lift, pitching and rolling moments and geometric dimensions. The analysis is performed using a potential code with real flow corrections and a decoupled boundary layer calculation. Finally, this method is applied to the design of the European Supersonic Civil Transport and the Oblique Flying Wing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, I., von Doenhoff, A. Theory of Wing Sections, Dover Publications, New York 1949.

    Google Scholar 

  2. Baals, D. D., Robins, A., Harris, R.V. Aerodynamic Design Integration of Supersonic Aircraft, AIAA 68–1018, 1968

    Google Scholar 

  3. Bore, C.L. Propulsion Streamtubes in Supersonic Flow and Supercritical Intake Cowl, Aeronautical J., September 1993.

    Google Scholar 

  4. Braunschädel, A. Erprobung Numerischer Aerodynamischer Verfahren für Überschallverkehrsflugzeuge an Verschiedenen Konfigurationen, Diplomarbeit Technische Hochschule Aachen, 1994.

    Google Scholar 

  5. Carlson, H. A Numerical Method For the Design of Camber Surfaces of Supersonic Wings With Arbitrary Planforms, NASA TND 2341, 1964

    Google Scholar 

  6. Carlson, H. W., Mack, R. J., Barger, R. L. Estimation of Attainable Leading-edge Thrust for Wings at Subsonic and Supersonic Speeds, NASA TP-1500, 1979.

    Google Scholar 

  7. Cosentino, G. M., Holst, T. L. Numerical Optimization Design of Advanced Transonic Wing Configurations, J. Aircraft 23 (3), 1986.

    Google Scholar 

  8. Dargel, G., Thiede, P. Viscous Transonic Airfoil Flow Simulation by an Efficient Viscous-inviscid Interaction Method, AIAA paper 87–0412, Jan. 1987.

    Google Scholar 

  9. Eminton, E., Lord, W. T. Note on the Numerical Evaluation of the Wave Drag of Smooth Slender Bodies Using Optimum Area Distributions for Minimum Wave Drag, J. Roy. Aero. Soc., Jan. 1956.

    Google Scholar 

  10. Eppler, R., Somers, D. A Computer Program for the Design and Analysis of Low-speed Airfoils, NASA TM 80210, 1980.

    Google Scholar 

  11. Greif, E. In-flight Measurement of Static Pressures and Boundary Layer State with Integrated Sensors, J. Aircraft 28 (5), May 1991.

    Google Scholar 

  12. Hicks, R., Van der Plaats, G., Murman, E. M., King, R. Airfoil Section Drag Reduction at Transonic Speeds by Numerical Optimization, SAE Paper 760–477, 1976.

    Google Scholar 

  13. Holst, T. Viscous Transonic Airfoil Workshop Compendium of Results, AIAA 87–1460, 1987.

    Google Scholar 

  14. Krämer, E., Gottmann, T. Berechnung des Strömungsfeldes eines Überschallflugzeugs mit Vorder-und Hinterkantenklappen im Transschall mit Hilfe des EUFLEX - Verfahrens, DASA—LME211—SPUB-531, Munich 1993.

    Google Scholar 

  15. Lee, K. D. Application of Computational Fluid Dynamics in Transonic Aerodynamic Design, AIAA paper 93–3481-CP, 1993.

    Google Scholar 

  16. Lomax, H. The Wave Drag of Arbitrary Configurations in Linearized Flow as Determined by Areas and Forces in Oblique Planes, Ames Aeronautical Laboratory, NACA RM A55 - A18, 1955.

    Google Scholar 

  17. Reneaux, J. Numerical Optimization Methods for Airfoil Design, Recherche Aerospatiale no. 1984 5, 1984.

    Google Scholar 

  18. Sobieczky, H. Progress in Inverse Design and Optimization in Aerodynamics, AGARD CP 463 Paper 1, (1989)

    Google Scholar 

  19. Torenbeek, E. Synthesis of Subsonic Airplane Design, Delft University Press, 1982.

    Google Scholar 

  20. Tucker, W.A. A Method for the Design of Sweptback Wings Warped to Produce Specified Flight Characteristics at Supersonic Speeds, NACA R 1226, 1956

    Google Scholar 

  21. Van der Velden, A. J. M. Aerodynamic Design and Synthesis of the Oblique Flying Wing Supersonic Transport, Ph.D. Thesis, Stanford University, Dept. Aero./Astro. SUDAAR 621, UMI Microfilm #DA9234183, June 1992.

    Google Scholar 

  22. Van der Velden, A. J. M. Multi-disciplinary SCT Design Optimization, AIAA paper 93–3931, 1993.

    Google Scholar 

  23. Van der Velden, A. J. M. Multi-point Optimization of Airfoils, Deutsche Aerospace Airbus Bericht EF-1979, Nov. 1993 (not published).

    Google Scholar 

  24. Van der Velden, A., J. M. Tools for Applied Engineering Optimization, AGARD R 803, Apr. 1994.

    Google Scholar 

  25. Van der Velden, A. J. M., Von Reith, D. Multi-Disciplinary SCT Design at Deutsche Aerospace Airbus, 7th European Aerospace Conference EAC ‘94. 25–27 October 1994 Toulouse.

    Google Scholar 

  26. Woodward, F. A. Analysis and Design of Supersonic Wing-body Combinations, Including Flow Properties in the Near-field, NASA CR-73106, 1967.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Wien

About this chapter

Cite this chapter

Van der Velden, A. (1997). Supersonic Aircraft Shape Optimization. In: Sobieczky, H. (eds) New Design Concepts for High Speed Air Transport. International Centre for Mechanical Sciences, vol 366. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2658-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2658-5_16

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82815-1

  • Online ISBN: 978-3-7091-2658-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics