Optimality Conditions for Discrete Periodic Optimization Problems

  • Sergio Bittanti
  • Giorgio Fronza
  • Guido Guardabassi
Part of the International Centre for Mechanical Sciences book series (CISM, volume 135)


A discrete periodic optimization problem can be stated in the following way.


Maximum Principle Discrete System Mathematical Program Approach Discrete Maximum Principle Discrete Optimal Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Aris, G.L. Nemhauser, D.J. Wilde, “Optimization of Multistage Cyclic and Branching Systems by Serial Procedures”, ANN. Hist. Chem. Engs. J., Vol. 10, N°6, PP. 913–919, Nov. 1964.Google Scholar
  2. [2]
    U. Bertelé, F. Brioschi: ‘Non-serial Dynamic Programming“, Academic Press, New-York 1972 (to appear).Google Scholar
  3. [3]
    D. Tabak: ‘Application of Mathematical Programming Techniques in Optimal Control: a Survey“, IEEE Trans. On Autom Contr., Vol. AC-15, N° 6, pp. 688–690, Dec. 1970.CrossRefGoogle Scholar
  4. [4] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, E.F. Mischenko: ‘The Mathematical Theory of Optimal Processes“ (Engl. Transl.)
    L.W. Neustadt ed.), Wiley ( Interscience ), New-York 1962.Google Scholar
  5. [5]
    S. Katz: “A Discrete Version of Pontryagin’s Maximum, Principle”, J. Electr. Contr. Vol. 13, N° 2, p. 179, 1962.CrossRefGoogle Scholar
  6. [6]
    L. Fan, C. Wang, “ The Discrete Maximum Principle’’, John Wiley and Sons, New-York, 1964.MATHGoogle Scholar
  7. [7]
    A.G. Butkowskii, “The Necessary and Sufficient Conditions for Optimality of Discrete Control Systems”, Avtomatika i Telemekhanika,24, N°8 (1963).Google Scholar
  8. [8]
    A.I. Propoi, “ The Maximum Principle for Discrete Control Systems”, Avtomatika i Telemekhanika, Vol 26, N°7, (1965).Google Scholar
  9. [9]
    A.J.M. Holtzmann, H. Halkin, “Directional Convexity and the Maximum Principle for Discrete Systems”, SIAM, J. Control, Vol. 4, N°2, May 1966.Google Scholar
  10. [10]
    J.M. Holtzmann, “On the Maximum Principle for Non—lin ear Discrete—Time Systems”, MEE Trans. on Autom—Contr., Vol. AC-11,N°2, April 1966.Google Scholar
  11. [11]
    M. Canon, C. Cullum, E. Polak: “Constrained Minimization Problems in Finite—Dimensional Spaces”, SIAM J. Contr. Vol. 4, N°3, Aug. 1966.Google Scholar
  12. [12]
    R. Gabasov, F.M.Kirillova, “Extensions of L.S. Pontriagin Maximum Principle to Discrete Systems” Automat. i Telemekhon. Vol 27, N° 11 (1966).Google Scholar
  13. [13]
    R. Gabasov, “Theory of Optimal Processes in Discrete Systems”, Zh. Vych. Matem i Matemat. Fiz., Vol. 8, N°4 (1968).Google Scholar
  14. [14]
    R. Gabosov, F.M.Kirillova, ‘Theory of Necessary Conditions of Optimality for Discrete Systems“, Avtom i Telemekhan.,Vol. 30, N°12, (1968).Google Scholar
  15. [15]
    R. Gabasov, N.V. Tarashenko, “ Necessary High—Order Conditions of Optimality for Discrete Systems; Avtom i Telemekhan, Vol 32, N° 7 (1971).Google Scholar
  16. [16]
    C. Maffezzoni, S. Rinaldi, “Periodic Optimization of Discrete Systems”, Ricerche di Automatica Vol. 2, N° 3, December 1971.Google Scholar

Copyright information

© Springer-Verlag Wien 1972

Authors and Affiliations

  • Sergio Bittanti
  • Giorgio Fronza
  • Guido Guardabassi
    • 1
  1. 1.Istituto di Elettrotecnica ed ElettronicaPolitecnico di MilanoMilanoItaly

Personalised recommendations