# Elements of Cryptology

• M. Davio
• J.-M. Goethals
Chapter
Part of the International Centre for Mechanical Sciences book series (CISM, volume 279)

## Abstract

This section is based on Shannon’s original paper1 which presents an information-theoretic approach to cryptology. Previous accounts of Shannon’s theory may be found in the books by Konheim2 and Beker and Piper3 Figure gives a schematic diagram of a cipher system (or secrecy system, as it was called by Shannon) At the transmitting end there are two “information” sources: a message source and a key source. Before any message is sent, the two parties, the encipherer and the recipient, agree on their key K, which is selected from the available set: the key space. Once the key is agreed, the encipherer selects a message M from the message space, enciphers it with the particular transformation T K determined by the key, and sends the cryptogram C = T K (M) over a public channel (where it can be intercepted) to the intended recipient. At the receiving end the cryptogram and the key are combined by the decipherer to recover the message M = T K −1 (C). The set of all possible cryptograms is called the cryptogram space, Naturally, the transformations T k mapping messages into cryptograms should be invertible.

## Keywords

Knapsack Problem Block Cipher Message Space User Authentication Scheme Perfect Secrecy
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. 1.
C. E. Shannon, “Communication theory of secrecy systems,” BSTJ 28 pp. 656–715 (1949).
2. 2.
A. G. Konheim, Cryptography: A Primer, J Wiley, New York (1981).
3. 3.
H. Beker and F. Piper, Cipher systems, Northwood Books, London (1982).
4. 1.
E. Grossman, “Group theoretic remarks on cryptogtaphic systems based on two types of addition,” IBM TJ Wattson Res. Center RC 4742 (1974).Google Scholar
5. 2.
D. Coppersmith and E. Grossman, “Generators for certain alternating groups with applications to cryptography,” SIAM journal on, applied mathematics 29 pp. 824–627 (1975).
6. 1.
A. G. Konheim, Cryptography: A Primer, J Wiley, New York (1981).
7. 2.
J. B. Kam and G. I. Davida, “Structured design of substitution-permutation encryption networks,” IEEE Transactions on computers C-28 pp. 747–753 (1979).Google Scholar
8. 3.
C. Ronse, “Substitution networks,” Philips Research Laboratory. Brussels R-444 (1980).Google Scholar
9. 4.
V. E. Benes, Mathematical theory of switching networks and telephone traffic, Academic press, New York (1965).Google Scholar
10. 5.
D. Slepian, “Two theorems on a particular switching network,” Unpublished manuscript, (1952).Google Scholar
11. 6.
A. Waksman, “A permutation network,” JI ACM 15 pp. 159–163 (1968).
12. 7.
S. W. Golomb, Shift register sequences, Holden Day, San Francisco (1967).
13. 8.
C. E. Shannon, “Communication theory of secrecy systems,” BSTJ 28 pp. 656–715 (1949).
14. 9.
H. Feistel, “Cryptography and computer privacy,” Scientific American, pp. 1523 (1973).Google Scholar
15. 10.
R Morris, N. J. A. Sloane, and A. D. Wyner, “Assessment of the NBS proposed Data Encryption Standard,” Cr ptologia 1 pp. 301–306 (1977).Google Scholar
16. 11.
A. M. Whitehead, “Memoir on the algebra of symbolic logic,” Amer. Jlof Math 23 pp. 139–165 (1901).
17. 12.
L. Lowenheim, “Gebietdeterminanten,” Math. Ann 79 pp. 222–236 (1919).
18. 13.
S. Rudeanu, Boolean functions and equations, North Holland, Amsterdam (1974).
19. 14.
D. A. Huffman, “Canonical forms for information lossless finite state logical machines,” IRE Transactions on circuit theory CT-6 pp. 41–59 (1959). Special supplementGoogle Scholar
20. 15.
A. M. Duguid, “Structural properties of switching networks,” Broom, University Progress report, (1959).Google Scholar
21. 16.
V. J. Neiman, “Structure et commande optimales des reseaux de connexion sans bloquage,” Annales des telecommunications 24 pp. 232–238 (1969).Google Scholar
22. 17.
N. T. Tsao-Wu, “On Neiman’s algorithm for the control of rearrangeable switching networks,” IEEE transactions on communications COM-22 pp. 737–742 (1974).Google Scholar
23. 18.
I. J. Good, “The relationship between two Fast Fourier Transforms,” IEEE Transactions on computers C-20 pp. 310–317 (1971).Google Scholar
24. Davio, M. and Quisquater, J. J., Methodology in information security. Mutual authentication procedures. Application to access control., Proc. 1982 Zurich International Seminar on Digital Communication, 1982, pp. 87–92.Google Scholar
25. Diffie, W. and Hellman, M. E., New directions in cryptography, IEEE Trans. Inform. Theory, IT-22, 6, Nov. 1976, pp. 644–654.
26. Diffie, W. and Hellman, M. E., Privacy and authentication. An introduction to cryptography, Proc. IEEE, 87, 3, 1979, pp. 397–427.
27. Evans, A., Kantorovitz, W. and Weiss, E., A user authentication scheme not requiring secrecy in the computer, Comm. ACM, 17, 1974, pp. 437–442.
28. Ingemarson, I., Tang, D. T. and Wong, C. K., A conference key distribution system, IBM Research Report RC 8256 (#35599), 1980.Google Scholar
29. Ingemarson, I. and Wong, C. K., A user authentication scheme based on a trapdoor one-way function, IBM Research Report, 1980.Google Scholar
30. Mc Eliece, R. J., A public key cryptosystem based on algebraic theory, Deep space network progress rept 42–44, Pasadena, Jet propulsion lab., 1978, pp. 114–116.Google Scholar
31. Merkle, R. C., Protocols for public key cryptosystems, Proc. 1980 conference on security and privacy, IEEE, NY, 1980, pp. 122–134.Google Scholar
32. Merkle, R. C. and Hellman, M. E., Hiding information and signatures in trapdoor knapsacks, IEEE Trans. Inform. Theory, 1T-24, 1978, pp. 525–530.Google Scholar
33. Rivest, R. L., Shamir, A. and Adleman, L., A method of obtaining digital signatures and public-key cryptosystems, Comm. ACM, 21, Feb. 1978, pp. 120–126.
34. Shamir, A., On the power of commutativity in cryptography, in “Automata, languages and programming’; ICALP 80, Lectures Notes in Computer Science n° 85, Springer-Verlag, Berlin, 1980, pp. 582–595.Google Scholar
35. Simmons, G. J., A system for point of sale or access user authentication and identification, IEEE workshop on communication security, Santa Barbara, CA., 1981.Google Scholar
36. 1.
R. C. Merkle and M. E. Hellman, “Hiding information and signatures in trapdoor knapsacks,” IEEE transactions on information theory 24 pp. 525–530 (1978).
37. 2.
E. Horowitz and S. Salmi, “Computing partitions with applications to the knapsack,” It of the ACM 21 pp. 277–292 (1974).
38. 3.
A. Shamir and R. E. Zippel, “On the security of the Merkle-Hellman cryptographic scheme,” IEEE transactions on information theory 26 pp. 339–340 (1980).
39. 4.
Y. Desrnedt, J. Vandewalle, and R. Govaerts, “Critical analysis of the Knapsack Public Key Algorithm,” IEEE Transactions on information theory,(1982). to appearGoogle Scholar
40. 5.
A. Shamir, Apolynomial time algorithm for breaking Merkle-Hellman cryptosystems, The Neiman Insititute, Rehovot, Israel (1982). Research announcement; preliminary draftGoogle Scholar
41. 1.
R. L. Rivest, “Remarks on a proposed cryptanalytic attack on the MIT public-key cryptosystem,” Oryptologia, pp. 62–65 (1978).Google Scholar
42. 2.
M. A. Morrison and J. Brillhart, “A method for factoring and the factorization of F7,” Math. Comp. 29 pp. 183–205 (1975).
43. 3.
J. H. Pollard, “A Monte-Carlo Method for Factorization,” BIT 15 pp. 331–334 (1975).
44. 4.
H. C. Williams and B. Schmid, “Some remarks concerning the MIT public-key cryptosystem,” BIT 19 pp. 525–538 (1979).
45. 5.
G. J. Simmons and M. J. Norris, “Preliminary comments on the MIT public-key cryptosystem,” Oryptologia 1 (4) pp. 406–414 (1977).Google Scholar
46. 6.
T. Herlestam, “Critical remarks on some public-key cryptosystems,” BIT 18 pp. 493–496 (1978).
47. 7.
R. L. Rivest, by T. Herlestam“” “Critical remarks on ”Critical Remarks on some public-key cryptosystems“ by T. Herlestam,” BIT 19 pp. 274–275 (1979).
48. 8.
G. R. Blakley and I. Borosh, “Rivest-Shamir-Adleman public-key cryptosystems do not always conceal messages,” Computers and Mathematics with Applications 5 pp. 169–178] (1979).
49. H. Beker and F Piper, Cipher systems, Northwood Books, London (1982).
50. V. E. Benes, Mathematical theory of switching networks and telephone traffic, Academic press, New York (1965).
51. B. Blakley and G. R. Blakley, “Security of number theoretic public-key cryptosystems against random attack, II,” Cryptologia 1 pp. 29–41 (1979).
52. G. R. Blakley and I. Borosh, “Rivest-Shamir-Adleman public-key cryptosystems do not always conceal messages,” Computers and Mathematics with Applications 5 pp. 169–178] (1979).Google Scholar
53. D. Coppersmith and E. Grossman, “Generators for certain alternating groups with applications to cryptography,” SIAM journal on applied mathematics 29 pp. 624–627 (1975).
54. M. Davio and J.-J. Quisquater, “Methodology in Information Security. Mutual Authentication Procedures. Application to access control.,” Proceedings 1982 Zurich International Seminar on Digital Communications, pp. 8792 (1982).Google Scholar
55. Y. Desmedt, J. Vandewalle, and R Govaerts, “Critical analysis of the Knapsack Public Key Algorithm,” IEEE Transactions on information theory,(1982). to appearGoogle Scholar
56. W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE Transactions on information theory IT-22 pp. 644–654 (1976).Google Scholar
57. W. Diffie and M. E. Hellman, “Privacy and Authentication. An Introduction to Cryptography.,” IEEE Proceedings 87 (3) pp. 397–427 (1979).
58. A. M. Duguid, “Structural properties of switching networks,” Brown University Progress report, (1959). Google Scholar
59. A, Evans, W Kantorowitz, and E. Weiss, “A user Authentication Scheme not Requiring Secrecy in the Computer,” Communications of the ACM 17 pp. 437–442 (1974).
60. H. Feistel, “Cryptographic coding for data bank privacy,” IBM Research Report RC2827 (1970).Google Scholar
61. S. W. Golomb, Shift register sequences, Holden Day, San Francisco (1967).Google Scholar
62. I. J. Good, “The relationship between two Fast Fourier Transforms,” IEEE Transactions on computers C-20 pp. 310–317 (1971).Google Scholar
63. E. Grossman, “Group theoretic remarks on cryptogtaphic systems based on two types of addition,” IBM TJ Wattson Res. Center RC 4742 (1974).Google Scholar
64. T. Herlestam, “Critical remarks on some public-key cryptosystems,” BIT 18 pp. 493–496 (1978).
65. E. Horowitz and S. Salmi, “Computing partitions with applications to the knapsack,” Il of the ACM 21 pp. 277–292 (1974).
66. D. A. Huffman, “Canonical forms for information lossless finite state logical machines,” IRE Transactions on circuit theory CT-6 pp. 41–59 (1959). Special supplementGoogle Scholar
67. I. Ingemarson, “A user authentication scheme based on a trapdoor one-way function,” IBM Res. Rpt (1980).Google Scholar
68. I. lngemarsson and C. K. Wong, “A conference Key Distribution System,” IBM Research Report RC 8236 (#35599) (1980).Google Scholar
69. J. B. Kam and G. I. Davida, “Structured design of substitution-permutation encryption networks,” IEEE Transactions on computers 28. 747–753 (1979).
70. A. G. Konheim, Cryptography: A Primer, J Wiley, New York (1981).Google Scholar
71. L. Lowenheim, “Gebietdeterminanten,” Math. Ann 79 pp. 222–236 (1919).
72. R. McEliece, “A public key cryptosystem based on algabraic theory,” Deep space network Progr. Rpt JPL., Pasadena (1978).Google Scholar
73. R. C. Merkle and M. E. Hellman, “Hiding information and signatures in trapdoor knapsacks,” IEEE transactions on information theory 24 pp. 525–530 (1978).
74. R. C. Merkle, “Protocols for Public-Key Cryptosystems,” Proc. 1980 Conference on Security and Privacy. IEEE. N. Y., pp. 122–134 (1980).Google Scholar
75. R. Morris, N. J. A. Sloane, and A. D. Wyner, “Assessment of the NBS proposed Data Encryption Standard,” Cryptologia 1 pp. 301–306 (1977).
76. M. A. Morrison and J. Brillhart, “A method for factoring and the factorization of F7, Math. Comp. 29 pp. 183–205 (1975).
77. V. J. Neiman, “Structure et commande optimales des roseaux de connexion sans bloquage,” Annales des telecommunications 24 pp. 232–238 (1969).Google Scholar
78. J. H. Pollard, “A Monte-Carlo Method for Factorization,” BIT 15 pp. 331–334 (1975).
79. R. L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital Signatures and Public-Key Cryptosystems,” Communications of the ACM 21 (2) pp. 120–126 (1978).
80. R. L. Rivest, “Remarks on a proposed cryptanalytic attack on the MIT public-key cryptosystem,” Cryptologia, pp. 62–65 (1978).Google Scholar
81. R. L. Rivest, “Critical remarks on ”Critical Remarks on some public-key cryptosystems“,” BIT 19 pp. 274–275 (1979).
82. C. Ronse, “Substitution networks,” Philips Research Laboratory. Brussels R444 (1980). Google Scholar
83. S. Rudeanu, Boolean functions and equations, North Holland, Amsterdam (1974).
84. A. Shamir, “On the Power of Commutativity in Cryptography,” pp. 582–595 in Automata, Languages and Programming. ICALP_80 Lecture Notes, Springer, Berlin (1980).Google Scholar
85. A. Shamir and R. E. Zippel, “On the security of the Merkle-Hellman cryptographic scheme,” IEEE transactions on information theory IT-28 pp. 339–340 (1980).Google Scholar
86. A Shamir, A polynomial time algorithm for breaking Merkle-Hellman cryptosystems, The Neiman Insititute, Rehovot, Israel (1982). Research announcement; preliminary draftGoogle Scholar
87. C. E. Shannon, “Communication theory of secrecy systems,” BSTJ 28 pp. 656–715 (1949).Google Scholar
88. G. J. Simmons and M. J. Norris, “Preliminary comments on the MIT public-key cryptosystem,” Cryptologia 1 (4) pp. 406–414 (1977).
89. G J Simmons, “A System for Point-of-Sale or Access User Authentication and Identification,” IEEE Workshop on Communication Security, (1981). Google Scholar
90. D. Slepian, “Two theorems on a particular switching network,” Unpublished manuscript, (1952).Google Scholar
91. R. Solovay and V. Strassen, “A fast Monte-Carlo test for primality,” SIAM Jl. of computing 6 pp. 84–85 (1977).
92. N. T. Tsao-Wu, “On Neiman’s algorithm for the control of rearrangeable switching networks,” IEEE transactions on communications COM-22 pp. 737–742 (1974).Google Scholar
93. A. Waksman, “A permutation network,”,I1 ACM 15 pp. 159–163 (1968).
94. A. M. Whitehead, “Memoir on the algebra of symbolic logic,” Amer. Jt of Math 23 pp. 139–165 (1901).
95. H. C. Williams and B. Schmid, “Some remarks concerning the MIT public-key cryptosystem,” BIT 19 pp. 525–538 (1979).