Singular Perturbations in Nonlinear Systems and Optimal Control

  • P. Habets
Part of the International Centre for Mechanical Sciences book series (CISM, volume 280)


Let us consider a nonlinear system
Where × ∈ ℝn, y ∈ ℝm are state vectors, u ∈ ℝr is a control vector, t ∈ [0, 1] and ε > 0 is a small parameter. The objectives is to find a control u(t) which minimizes the cost functional


Boundary Layer Boundary Value Problem Formal Solution Singular Perturbation Fundamental Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Athans, M. and Falb, P.L., Optimal Control, Mc Graw-Hill, New York, 1966.MATHGoogle Scholar
  2. 2.
    Kokotović, P.V. and Sannuti, P., Singular Perturbation Method for Reducing the Model Order in Optimal Control Design, IEEE Trans. A.C., 4, 377, 1968.CrossRefGoogle Scholar
  3. 3.
    O’Malley, R.E. Jr., The Singularly Perturbed Linear State Regulator Problem, SIAM J. Control, 10, 399, 1972.CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Sannuti, P., Asymptotic Series Solution of Singularly Perturbed Optimal Control Problems, Automatica, 10, 183, 1974.CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    O’Malley, R.E. Jr., Boundary Layer Methods for Certain Nonlinear Singularly Perturbed Optimal Control Problems, J. Math. Anal. Appl., 45, 468, 1974.CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Sannuti, P., Asymptotic Expansions of Singularly Perturbed Quasi-linear Optimal Systems, SIAM J. Control, 13, 572, 1975.CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Hadlock, C.R., Existence and Dependence on a Parameter of Solutions of a Nonlinear Two-Point Boundary Value Problem, J. Diff. Eq., 14, 498, 1973.ADSCrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Freedman, M.I. and Granoff, B., Formal Asymptotic Solution of a Singularly Perturbed Nonlinear Optimal Control Problem, J. Opt. Th. Appl., 19, 301, 1976.CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Freedman, M.I. and Kaplan, J., Singular Perturbations of Two-Point Boundary Value Problems Arising in Optimal Control, SIAM J. Control, 14, 189, 1976.CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Vasileva, A.B. and Anikeeva, V.A., Asymptotic Expansion of Solutions of Nonlinear Problems with Singular Boundary Conditions, Differential Equations 12, 1235, 1976.MathSciNetGoogle Scholar
  11. 11.
    O’Malley, R.E. Jr., On Multiple Solutions of Singularly Perturbed Systems in the Conditionally Stable Case, in Singular Perturbations and Asymptotics, Meyer, R.E. and Parter, S.V., Eds, Academic Press, New York 1980.Google Scholar
  12. 12.
    Chang, K.W. and Coppel, W.A., Singular Perturbations of Initial Value Problem over a Finite Interval, Arch. Rational Mech. Anal, 32, 268, 1969.ADSCrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Chang, K.W., Singular Perturbations of a General Boundary Value Problem, SIAM J. Math. Anal., 3, 520, 1972.CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Krasnosel’ski, M.A., Topological Methods in the Theory of Nonlinear Integral Equations, Pergamon Press, 1954.Google Scholar
  15. 15.
    Erdelyi, A., A Case History in Singular Perturbation, In: International Conference on Differential Equations, Antosiewicz, H.A., Eds., Academic Press, New York 1975.Google Scholar

Copyright information

© Springer-Verlag Wien 1983

Authors and Affiliations

  • P. Habets
    • 1
  1. 1.Institut de MathématiqueUniversité Catholique de LouvainLouvain-La-NeuveBelgium

Personalised recommendations