Advertisement

Singularly Perturbed Systems of Diffusion Type and Feedback Control

  • A. van Harten
Part of the International Centre for Mechanical Sciences book series (CISM, volume 280)

Abstract

In this paper we shall consider linear systems of diffusion-type subject to a certain feed-back control mechanism in a situation, where the diffusion constant is a small parameter. Such controlled diffusion systems can be found f.e. in the context of heating problems [1], [2] or chemical or nuclear reactor design, [3]. For the feedback control there are many possibilities: feedback without òr with memory, with distributed input òr input through the boundary, etc., while it also depends on the number and kind of observations, cf. [2], [4], [5], [17]. Here we shall consider distributed as well as boundary control, but always on the basis of an instantaneous feedback coupling using observations of the state in a finite number of points y1,...,yp in the interior of the domain D. In the case of Dirichlet boundary conditions the evolution of the state is described by one of the following problems:

Keywords

Feedback Control Control Operator Singular Perturbation Boundary Control Analytic Semigroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    van Harten, A., 1979 “Feedback control of singularly perturbed heating problems”, Lecture Notes in Math., 711, Springer, Berlin.Google Scholar
  2. [2]
    Curtain, R.F., Pritchard, A.J., 1978 “Infinite dimensional linear systems theory”, Lecture Notes in Contr. and Inf. Sc., 8, Springer, Berlin.CrossRefGoogle Scholar
  3. [3]
    Owens, D.H., 1980 “Spatial kinetics in nuclear reactor systems”, in: “Modelling of dynamical systems”, P. Peregrinus, Stevenage.Google Scholar
  4. [4]
    Schumacher, J.M., 1981 “Dynamic feedback in finite-and infinite dimensional linear systems”, Math. Centre, A’dam.Google Scholar
  5. [5]
    Triggiani, R., 1979 “On Nambu’s boundary stabilizability problem for diffusion. processes”, J. Diff. Eq., 33.Google Scholar
  6. [6]
    Eckhaus, W., 1979 “Asymptotic analysis of singular perturbations”, North-Holland, A’dam.Google Scholar
  7. [7]
    Fife, P.C., 1974 “Semi-linear elliptic boundary value problems with a small parameter”, Arch. Rat. Mech., 52.Google Scholar
  8. [8]
    van Harten, A., 1975 “Singularly perturbed non-linear 2nd order elliptic boundary value problems”, thesis, Math. Inst., Utrecht.Google Scholar
  9. [9]
    van Harten, A., 1978 “Non-linear singular perturbation problems: proofs of correctnes”, J. Math. An. Appl., 65.Google Scholar
  10. [10]
    de Groen, P.P.N., 1976 “Singularly perturbed differential operators of second order”, Math. Centre, A’dam.Google Scholar
  11. [11]
    Besjes, J.G., 1974 “Singular perturbation problems for linear parabolic differential operators of arbitrary order”, J. Math. An. Appl. 48 Google Scholar
  12. [12]
    van Harten, A., Schumacher, J.M., 1980 Well-posedness,of some evolution problems in the theory of automatic feedback control for systems with distributed parameters“, SIAM. J. Contr.Opt., 18.Google Scholar
  13. [13]
    van Harten, A., 1979 “On the spectral properties of a class of elliptic FDE arising in feedback control theory for diffusion processes”, preprint nr. 130, Math. Inst., Un. of Utrecht.Google Scholar
  14. [14]
    Triggiani, R., 1975 “On the stabilization problem in Banach spaces”, J. Math. An. Appl., 52.Google Scholar
  15. [15]
    Balas, M.J., 1979 “Feedback control of linear diffusion processes”, Int. J. Control, 29.Google Scholar
  16. [16]
    Balas, M.J., 1982 “Reduced order feedback control of distributed parameter systems via singular perturbation methods”, J. Math. An. Appl., 87.Google Scholar
  17. [17]
    Triggiani, R., 1980 “Boundary feedback stabilizability of parabolic equations”, Appl. Math. and Opt., 6.Google Scholar
  18. [18]
    Kato, T., 1966 “Perturbation theory for linear operators”, Springer, Berlin.CrossRefMATHGoogle Scholar
  19. [19]
    Wilkinson, J.H., 1965 “The algebraic eigenvalue problem”, Oxford Un. Press.Google Scholar
  20. [20]
    Lions, J.L., 1973 “Perturbations singulières dans les problèmes aux limites et en contrôle optimal”, Lect. Notes in Math., 323, Springer, Berlin.Google Scholar
  21. [21]
    Friedman, A., 1976 “Stochastic differential equations and applications”, Ac. Press, New York.MATHGoogle Scholar
  22. [22]
    Profiter, M.H., Weinberger, H.F., 1967 “Maximum principles in differential equations”, Prentice Hall, London.Google Scholar
  23. [23]
    Schwartz, L., 1965 “Méthodesmathématiques poúr les sciences physiques”, Hermann, Paris.Google Scholar
  24. [24]
    Ladyzenskaja, D.A., Solonnikov, V.A., Uraltseva, N.N., 1968 “Quasi-linear equations of parabolic type”, Am. Math. Soc. Transl., 23.Google Scholar
  25. [25]
    Adams, R.A., 1975 “Sobolev spaces”, Ac. Press, New York.MATHGoogle Scholar
  26. [26]
    Stewart, H.B., 1980 “Generation of semigroups by strongly elliptic operators under general boundary conditions”, Trans. A.M.S., 259.Google Scholar
  27. [27]
    Krasnoselskii, M.A., etal., 1976 “Integral operators in spaces of summable functions”, Noordhoff, Leyden.CrossRefGoogle Scholar
  28. [28]
    Agmon, S., Douglis, A., Nirenberg, N., 1959 “Estimates near the boundary for solutions of elliptic PDE satisfying general BC”, Comm. Pure Appl. Math., 12.Google Scholar
  29. [29]
    Conway, J.B., 1973 “Functions of one complex variable”, Springer, Berlin.CrossRefMATHGoogle Scholar
  30. [30]
    Hale, J., 1971 “Functional differential equations”, Springer, Berlin.CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 1983

Authors and Affiliations

  • A. van Harten
    • 1
  1. 1.Mathematical InstituteUn. of UtrechtThe Netherlands

Personalised recommendations