General Frame for the Definition of Constitutive Laws for Large Non-Isothermic Elastic-Plastic and Elastic-Visco-Plastic Deformations

  • Theodor Lehmann
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 281)


The deformations of a body considered as a classical continuum can be derived from the description of the motion of the material points against a suitably defined space of observation furnished with a space-fixed rigid coordinate system. We can, however, also describe these deformations by considering the changes of the metric of a body-fixed coordinate system which is co-moving and co-deforming with the body.Both methods are in principle equivalent. We shall see, however, that the use of a body-fixed coordinate system may have some advantages at least for the definition of constitutive laws. Therefore we shall begin with some considerations concerning the use of space-fixed and body-fixed coordinate systems.


Entropy Production Deformation Rate Internal Variable Inelastic Deformation Thermomechanical Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Raniecki, B. and Thermann, K., Infinitesimal thermoplasticity and kinematics of finite elastic-plastic deformations, Mitt. Inst. Mech. Ruhr-Univ. Bochum, Nr. 2, 1978Google Scholar
  2. 2.
    Lehmann, Th., Some aspects of non-isothermic large inelastic deformations, Sol. Mech. Arch. 3, 261, 1978MATHGoogle Scholar
  3. 3.
    Zaremba, M.S., Sur une forme perfectionnée de la théorie de la relaxation, Anz. Akad. Krakau, math.-natura. Klasse 1903, 594Google Scholar
  4. 4.
    Jaumann, G., Geschlossenes System physikalischer und chemischer Differentialgesetze, Sitzungsber. Kais. Akad. Wiss. Wien, Abt. IIa, 120, 385, 1911MATHGoogle Scholar
  5. 5.
    Lehmann, Th. Formänderungen eines klassischen Kontinuums in vierdimensionaler Darstellung, Proc. XI. Congr. Appl. Mech., München 1964 (ed. H. Görtler ), Springer-Verlag Berlin/Heidelberg/New York 376, 1966Google Scholar
  6. 6.
    Fritsch, C. and Siegel, R., Kalt-und Warmfließkurven von Baustählen, Inst. Forsch. Maschinenbau, Karl-Marx-Stadt 1965Google Scholar
  7. 7.
    Lee, E.H., Elastic-plastic deformations at finite strains, J. Appl. Mech. 36, 1, 1969ADSCrossRefMATHGoogle Scholar
  8. 8.
    Sidoroff, F., The geometrical concept of intermediate configuration and elastic-plastic finite strain, Arch. Mech. 25, 299, 1973MathSciNetMATHGoogle Scholar
  9. 9.
    Mandel, J., Sur la décomposition d’une transformation élastoplastique, Comp. Rend. Acad. Sci. Paris A 272, 276, 1971MATHGoogle Scholar
  10. 10.
    Lee, E.H., Some comments on elastic-plastic analysis, Int. J. Sol. Struct. 17, 859, 1981CrossRefMATHGoogle Scholar
  11. 11.
    Sedov, L.I., Introduction to the Mechanics of a continuous medium (trans. from Russian ), Addison-Wesley, London, 1965Google Scholar
  12. 12.
    Green, A.E., and Naghdi, P.M., A general theory of an elastic-plastic continuum, Arch. Rat. Mech. Anal. 18, 251, 1965MathSciNetMATHGoogle Scholar
  13. 13.
    Lehmann, Th., On large elastic-plastic deformations, in: Foundations of plasticity (A. Sawczuk, ed.), No-rdhoff Publ. Comp., Leyden, 571, 1973Google Scholar
  14. 14.
    Lehmann, Th. Some remarks on the decomposition of deformations and mechanical work, Int. J. Eng. Sci. 20, 281, 1982CrossRefMATHGoogle Scholar
  15. 15.
    Lehmann, Th., On the theory of large, non-isothermic, elastic-plastic and elastic-viscoplastic deformations, Arch. Mech. 29, 393, 1977MATHGoogle Scholar
  16. 16.
    Lehmann, Th., On constitutive relations in thermoplasticity, in: Three-dimensional constitutive relations and ductile fracture (S. Nemat-Nasser, ed.) North-Holland Publ. Comp., Amsterdam 289, 1981Google Scholar
  17. 17.
    Bruhns, O. and Lehmann, Th., Optimum deformation rate in large inelastic deformations, in: Metal forming plasticity (H. Lippmann, ed.) Springer-Verlag Berlin/Heidelberg/New York, 120, 1979CrossRefGoogle Scholar
  18. 18.
    Rice, J., The localization of plastic deformation, in: Theoretical and Applied Mechanics, 14. IUTAM Congr. Delft, North-Holland Publ. Comp., Amsterdam 207, 1976Google Scholar
  19. 19.
    Bruhns, O. and Mielniczuk, J., Zur Theorie der Verzweigungen nichtisothermer elastoplastischer Deformationen, Ing. Arch., 46, 65, 1977CrossRefMATHGoogle Scholar
  20. 20.
    Litonski, J., Plastic flow of a tube under adiabatic torsion, Bull. Acad. Polon. Sci. 25, 1, 1977Google Scholar
  21. 21.
    Inoue, T., and Raniecki, B., Determination of thermal-hardening stress in steels by use of thermoplasticity, J. Mech. Phys. Sol., 26, 187, 1978ADSCrossRefMATHGoogle Scholar
  22. 22.
    Odquist, F.K.G., and Hult, J., Kriechfestigkeit metallischer Werkstoffe, Springer-Verlag Berlin 1962Google Scholar
  23. 23.
    Odquist, F.H.G., Mathematical theory of creep and creeprupture, Charendon Press, Oxford 1974Google Scholar
  24. 24.
    Rabotnov, Yu. N., Creep problems in structural members, translated from Russian, North-Holland Publ. Co., Amsterdam 1969Google Scholar
  25. 25.
    Perzyna, P., Fundamental problems in viscoplasticity, Advances of App. Mechanics, Academic Press Inc. New York, Vol. 9, 243, 1966Google Scholar
  26. 26.
    Penzy, R.K., and Marriott, Design for creep, Mc. Graw Hill, London 1971Google Scholar
  27. 27.
    Hult, J. (editor), IUTAM second symposium on creep in structures, Gothenburg, 1970, Springer-Verlag 1971Google Scholar

Copyright information

© Springer-Verlag Wien 1984

Authors and Affiliations

  • Theodor Lehmann
    • 1
  1. 1.Ruhr-University BochumBochumGermany

Personalised recommendations