Advertisement

Thermodynamic Theories of Thermoelasticity and Special Cases of Thermoplasticity

  • Ingo Müller
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 281)

Abstract

The objective of thermodynamics of solids is the determination of the fields of
$$\begin{gathered} density\;\rho ({X_A},t) \hfill \\ motion\;{x_i}({X_A},t) \hfill \\ temperature\;T({X_A},t) \hfill \\ \end{gathered} $$
(1.1)
in all particles of the body and at all times. XA characterizes a particle by its position in reference configuration.

Keywords

Heat Flux Reference Configuration Yield Load Thermodynamic Theory Adiabatic Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Truesdell, C., Toupin, R.A., The Classical Field Theories Handbuch der Physik III/1, Springer Berlin, Göttingen, Heidelberg, 1967, 226Google Scholar
  2. [2]
    Truesdell, C., Noll, W., The Non-linear Field Theories of Mechanics Handbuch der Physik 1II/3, Springer Berlin, Heidelberg, New York, 1965, 1Google Scholar
  3. [3]
    Müller, I., Thermodynamik, Grundlagen der Materialtheorie Bertelsmann Universitätsverlag,Düsseldorf, 1973Google Scholar
  4. [4]
    Alts, T., A new approach to a thermodynamic theory of fibre-reinforced Thermo-elastic materials with thereto-kinematic constraints, in Mechanics of Structures Media, Ed. A.P.S. Selvadurai, Elsevier Publ. Co., Amsterdam, 1981, part A, 29Google Scholar
  5. [5]
    Rivlin, R.S., Saunders, D.W., Large elastic deformations of isotropic materials VII. Experiments on the deformation of rubber. Phil. Trans. Roy. Soc. London, 243, 251, 1951ADSCrossRefMATHGoogle Scholar
  6. [6]
    Clausius, R., Mechanische Wärmetheorie, Vieweg und Sohn, Braunschweig, 1887Google Scholar
  7. [7]
    Carathéodory, C., Untersuchungen über die Grundlagen der Thermodynamik, Math. Annalen, 67, 355, 1909CrossRefGoogle Scholar
  8. [8]
    Meixner, J., Reik, H.G., Die Thermodynamik der irreversiblen Prozesse in kontinuierlichen Medien mit inneren Umwandlungen, in Handbuch der Physik III/2, Springer Berlin, Heidelberg, New York, 1959Google Scholar
  9. [9]
    de Groot, S.R., Mazur, J., Non-equilibrium thermodynamics, North Holland ?ubl. Co., Amsterdam, 1962Google Scholar
  10. [10]
    Coleman, B.D., Noll, W., The thermodynamics of elastic materials with heat-conduction and viscosity, Arch. Rational I.Iech. Anal., 13, 167, 1963MathSciNetADSCrossRefMATHGoogle Scholar
  11. [11]
    Müller, I., Die Kältefunktion, eine universelle Funktion in der Thermodynamik viskoser wärmeleitender Flüssigkeiten, Arch. Rational Mech. Anal., 40, 1, 1971MATHGoogle Scholar
  12. [12]
    Müller, I., The coldness, a universal function in thermoelastic bodies, Arch. Rational Mech. Anal., 41, 319, 1971MATHGoogle Scholar
  13. [13]
    Liu, I.-Shih, Method of Lagrange multipliers for exploitation of the entropy principle, Arch. Rational Mech. Anal., 46, 131, 1972Google Scholar
  14. [14]
    Cattaneo, C., Sulla conduzione della calore, Atti del Sem. mat. e fis. Univ. di Modena, 3, 3, 1948Google Scholar
  15. [15]
    Müller, I., Zum Paradoxon der•Wärmeleitung, Z. f. Physik, 198, 329, 1967CrossRefMATHGoogle Scholar
  16. [16]
    Ruggeri, T., Generators of hyperbolic heat eauation in non-linear thermoelasticity, Rend. Sem. Mat. Padova (to appear)Google Scholar
  17. [17]
    Nakanishi, N., Lattice softening and the origin of SME in shape memory effects in alloys, Ed. Perkins, Plenum Press, N.Y. and London, 147, 1975Google Scholar
  18. [18]
    Rodriguez, C. and Brown, L.C. The Mechanical Properties of SME Alloys, in She Memory Effects in Alloys. Ed. J. Perkins, Plenum Press, N.Y. and London p. 29, 1975Google Scholar
  19. [19]
    Müller, I., Wilmanski, K., State functions for a pseudoelastic body, Proc. of Euromech 113 in Grenoble, Villars de Lans,(in press)Google Scholar
  20. [20]
    Müller, I., Wilmanski, K., A model for phase transition in pseudo-elastic bodies, Il Nuovo Cimento, 57B, 283, 1980CrossRefGoogle Scholar
  21. [21]
    Miller, I., Wilmanski, K., Memory alloys - phenomenology and Ersatzmodel, in Continuum Model of Discrete Systems, Brulin, 0. and Hsieh, R.K.T., Eds., North Holland Publ. Co., 495, 1981Google Scholar
  22. [22]
    Achenbach, M., Müller, I., Creep and yield in martensitic transformations, Ingenieurarchiv 53, 73, 1983CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 1984

Authors and Affiliations

  • Ingo Müller
    • 1
  1. 1.FB 9 — Hermann-Föttinger-InstitutTU BerlinGermany

Personalised recommendations