Measurements and Models in Physical Limnology

  • C. H. Mortimer
Part of the International Centre for Mechanical Sciences book series (CISM, volume 286)


Within the compass of six lectures it is manifestly impossible to cover adequately the history of the interplay between field observations and models as well as recent progress and promising future trends in physical limnology. Therefore Section 1 is an annotated bibliography of starting-points or first discoveries within the field of water movements, selected (it must be admitted) on the basis of the lecturer’s experience and interests. This selectivity may explain and perhaps excuse the immodest-seeming citation of his own publications. Section 2 (Recent History and Future Opportunities) will also contribute to history, but will consider in addition some promising future lines of research. The continuity between the lectures will, it is hoped, demonstrate the inseparable continuity between physical limnology and oceanography in particular and geophysical fluid dynamics in general. It is no coincidence, as the bibliography will demonstrate, that many of the recent findings in lakes have been published in oceanographic or geophysical journals and are becoming incorporated into general textbooks (1,2). Some hydrodynamic phenomena and mechanisms -for example those constrained by boundaries- can, in fact, be more easily studied and modelled in lakes than in oceans. For others the reverse is true.


Wind Stress Internal Wave Great Lake Inertial Frequency Vortex Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Casanady, G.T., 1981. Circulation of the Coastal Ocean. Reidel, Boston.Google Scholar
  2. (2).
    Gill, A., 1982. Atmosphere-ocean Dynamics. Academic Press, New York.Google Scholar
  3. (3).
    Saussure, H.B. de, 1799. Voyages dans les Alpes. Neuchatel.Google Scholar
  4. (4).
    McConnell, A., 1982. No Sea Too Deep: The History of Oceanographic Instruments. Hilger, Bristol.Google Scholar
  5. (5).
    Bèche, H.T. de la, 1819. Sur la profondeur et la température du Lac de Genève. Bibl. Univ. Sci. Arts, Genève.Google Scholar
  6. (6).
    Geistbeck, A., 1885. Die Seen der deutschen Alpen. Mitt. Ver. Erdkunde, Leipzig.Google Scholar
  7. (7).
    Birge, E.A., 1897: Plankton studies on Lake Mendota: II, The crustacea of the plankton from July 1894 to December 1896. Trans. Wisconsin Acad. Sci. Arts Lett., II, p. 274.Google Scholar
  8. (8).
    Forel, F.A., 1895. Lac Léman. Monographie Limnologique, 2, Lausanne.Google Scholar
  9. (9).
    Richter, E., 1897. Seestudien. Pencks Geogr. Abh., Wien, 6, p. 121Google Scholar
  10. (10).
    Strom, K.M., 1939. A reversing thermometer by Richter & Wiese with t/100°C graduation. Int. Rev. Hydrol., 38, p. 259.Google Scholar
  11. (11).
    Mortimer, C.H., 1953. A review of temperature measurement in limnology. Mitt. int. Verein. Limnol., 1, p. 25.Google Scholar
  12. (12).
    Becquerel & Breschet, 1836. Procédé électro-chimique pour determiner la température de la terre et des lacs à diverses profondeurs. C.R. Acad. Sci., Paris, 3, p. 778.Google Scholar
  13. (13).
    Warren, H.W. and G.C. Whipple, 1895. The thermophone, a new instrument for determining temperature. Technol. Quart., 8, p. 125.Google Scholar
  14. (14).
    Platt, R.B. and C.S. Shoup, 1950. The use of a thermistor in a study of summer temperature conditions of Mountain Lake, Virginia. Ecology, 31, p. 484.Google Scholar
  15. (15).
    Mortimer, C.H. and W.H. Moore, 1953. The use of thermistors for the measurement of lake temperatures. Mitt. int. Ver. Limnol., 2, p. 42.Google Scholar
  16. (16).
    Mortimer, C.H., 1952. Water movements in stratified lakes deduced from observations in Windermere and model experiments. Un. Geod. Geophys., Bruxelles, Assn. int. Hydrol., C. rend. rapp., 3, p. 335.Google Scholar
  17. (17).
    Mortimer, C.H., 1955. Some effects of the earth’s rotation on water movement in stratified lakes. Verh. Internat. Verein. Limnol., 12, p. 66.Google Scholar
  18. (18).
    Wedderburn, E.M. and A.W. Young, 1915. Temperature observations in Loch Earn, Part II. Trans. Roy. Soc. Edinburgh, 50, p. 741.Google Scholar
  19. (19).
    Mortimer, C.H., 1952. Water movements in lakes during summer stratification; evidence from the distribution of temperature in Windermere. Phil. Trans. Roy. Soc. London, B, 236, p. 355.ADSGoogle Scholar
  20. (20).
    Spilhaus, A.F., 1938. A bathythermograph. J. Mar. Res. Yale, 1, p. 95.Google Scholar
  21. (21).
    Boyce, F.M. and C.H. Mortimer, 1977. IFYGL temperature transects, Lake Ontario, 1972. Environment Canada, Tech. Bull., 100.Google Scholar
  22. (22).
    Church, P.E., 1942. The annual temperature cycle of Lake Michigan, I. Cooling from late autumn to the terminal point, 19411942. Univ. Chicago, Inst. Meteorol., Misc. Rept., 4.Google Scholar
  23. (23).
    Church, P.E., 1945. The annual temperature cycle of Lake Michigan, II. Spring warming and summer stationary periods, 1942. Univ. Chicago, Inst. Meteorol., Misc. Rept., 18.Google Scholar
  24. (24).
    Hollan, E., D.B. Rao and E. Bäuerle, 1980. Free surface oscillations in Lake Constance with an interpretation of the “Wonder of the rising water” at Constance in 1549. Arch. Met. Geophys. Biokl., Ser. A, 29.Google Scholar
  25. (25).
    Duillier, F. de, 1730. Remarques sur l’histoire du lac de Genève in Spon. Histoire de Genève, 2, p. 463.Google Scholar
  26. (26).
    Vaucher, J.P.E., 1833. Mémoire sur les seiches due Lac de Genève, composé de 1803 à 1804. Mém. Soc. Phys. Genève, 6, p. 35.Google Scholar
  27. (27).
    André, Father Louis, quoted and translated in Relation of 1671–72, and in Relation of 1676–77; Thwaites, R.G., The Jesuit Relations and Other Documents, 60, Burrow, Cleveland, Ohio, 1671, 1676.Google Scholar
  28. (28).
    Mortimer, C.H., 1965. Spectra of long surface waves and tides in Lake Michigan and Green Bay, Wisconsin. Great Lakes Res. Div., Univ. Mich., Publ. No. 13, p. 304.Google Scholar
  29. (29).
    Heaps, N.S., 1975. Resonant tidal co-oscillations in a narrow gulf. Arch. Met. Geophys. Bioklim., Ser. A, 24, p. 361.Google Scholar
  30. (30).
    Heaps, N.S., C.H. Mortimer and E.J. Fee, 1982. Numerical models and observations of water motion in Green Bay, Lake Michigan. Phil. Trans. Roy. Soc., A, 306, p. 371.ADSGoogle Scholar
  31. (31).
    Comstock, C.B., 1872. Irregular oscillations in surface of Lake Michigan at Milwaukee. Ann. Rep. Survey of the Northern and Northwestern Lakes, Appendix B, 14.Google Scholar
  32. (32).
    Forel, F.A., 1875. Les seiches, vagues d’oscillation fixe des lacs, ler discours. Actes Soc. Helvétique Sci. Nat., Andermatt, p. 157.Google Scholar
  33. (33).
    Rao, D.B., C.H. Mortimer and D.J. Schwab, 1976. Surface normal modes of Lake Michigan: calculations compared with spectra of observed water level fluctuations. J. Phys. Oceanogr., 6, p. 575.ADSGoogle Scholar
  34. (34).
    Merian, J.R., 1825. Ueber die Bewegungen tropfbarer Flüssigkeiten in Gefässen, Abhandl. J.R. Merian, Basel. (Attracted little attention until reproduced by Von der Mühl, Math. Ann., 28, p. 575 (1885)).Google Scholar
  35. (35).
    Chrystal, G., 1905. On the hydrodynamical theory of seiches (with a bibliographical sketch). Trans. Roy. Soc. Edinburgh, 41, p. 599.MATHGoogle Scholar
  36. (36).
    Defant, A., 1918. Neue Methode zur Ermittlung der Eigenschwingungen (seiches) von abgeschlossenen Wassermassen (Seen, Buchten, usw.). Ann. Hydrogr., Berlin, 46, p. 78.Google Scholar
  37. (37).
    Caloi, P., 1954. Oscillazioni libre del Lago di Garda. Arch. Met. Geophys. Bioklim., Ser. A, 7, p. 434.Google Scholar
  38. (38).
    Servais, F., 1957. Etude théorique des oscillations libres (seiches) du Lac Tanganika. Explor. Hydrobiol. Lac Tanganika, 1946–47, Inst. Roy. Sci. Nat. Belgique, Bruxelles, 2, p. 3.Google Scholar
  39. (39).
    Raggio, G. and K. Flutter, 1982. An extended channel model for the prediction of motion in elongated homogeneous lakes. Parts 1–3. J. Fluid Mech., 121, p. 231.MATHADSGoogle Scholar
  40. (40).
    Bergsten, F., 1926. The seiches of Lake Vetter. Geogr. Ann. Stockh., 1Google Scholar
  41. (41).
    Halbfass, W., 1923. Grundzüge einer vergleichenden Seenkunde. Born-träger, Berlin.Google Scholar
  42. (42).
    Taylor, G.I., 1920. Tidal oscillations in gulfs and rectangular basins. Proc. Lond. Math. Soc., 2nd Ser. 20, p. 148.Google Scholar
  43. (43).
    Jeffreys, H., 1923. The free oscillations of water in an elliptical lake. Proc. Lond. Math. Soc., 2nd Ser., p. 455.Google Scholar
  44. (44).
    Neumann, G., 1941. Eigenschwingungen der Ostsee. Arch. Deutsch.Seewarte, Mar. Observat., 61 (Heft 4).Google Scholar
  45. (45).
    Defant, F., 1953. Theorie der Seiches des Michigansees und ihre Abwandlung durch Wirkung der Corioliskraft. Arch. Met. Geophys. Bioklim., Wien, A, 6, p. 218.Google Scholar
  46. (46).
    Platzman, G.W. and D.B. Rao, 1964. The free oscillations of Lake Erie. Studies in Oceanography (Hidaka Volume), pp. 359382. Tokyo University Press.Google Scholar
  47. (47).
    Platzman, G.W. and D.B. Rao, 1964. Spectra of Lake Erie water levels. J. Geophys. Res., 69, p. 2525.ADSGoogle Scholar
  48. (48).
    Platzman, G.W., 1972. Two-dimensional free oscillations in natural basins. J. Phys. Oceanogr., 2, p. 117.ADSGoogle Scholar
  49. (49).
    Mortimer, C.H. and E.J. Fee, 1976. Free surface oscillation and tides of Lakes Michigan and Superior. Phil Trans. Soc. London, A, 281, p. 1.ADSGoogle Scholar
  50. (50).
    Rao, D.B. and D.J. Schwab, 1976. Two-dimensional mormal modes in arbitrary enclosed basins on a rotating earth: applications to Lakes Ontario and Superior. Phil. Trans. Roy. Soc. London, A, 281, p. 63.ADSGoogle Scholar
  51. (51).
    Schmidt, W., 1917. Wirkungen der ungeordneten Bewegungen im Wasser der Meere und Seen. Ann. Hydrogr. Mar. Met., 367, p. 431.Google Scholar
  52. (52).
    Schmidt, W., 1928. Ueber Temperatur und Stabilitätsverhältnisse von Seen. Geogr. Ann., 145.Google Scholar
  53. (53).
    Richardson, L.F., 1925. Turbulence and vertical temperature difference near trees. Phil. Mag., 49, p. 81.Google Scholar
  54. (54).
    Hellström, B., 1941. Wind effect on lakes and rivers. Ingen Vetensk Akad. Handl., 158.Google Scholar
  55. (55).
    Ruttner, F., 1952. Grundriss der Limnologie. 2nd ed., Berlin, Gruyter, 232, translated by F.E.J. Fry and D.G. Frey as Fundamentals of Limnology, Toronto, University Press.Google Scholar
  56. (56).
    Hutchinson, G.E., 1957. A Treatise on Limnology, Vol. 1. Geography, Physics and Chemistry, Wiley, New York, p. 1015.Google Scholar
  57. (57).
    Mortimer, C.H., 1974. Lake hydrodynamics. Mitt. internat. Verein. Limnol., 20, p. 124.Google Scholar
  58. (58).
    Mortimer, C.H., 1956. E.A. Birge - an explorer of lakes, pp. 163211 in E.A. Birge, a memoir, by G.C. Sellery, Madison, Univ. Wiscons in Press.Google Scholar
  59. (59).
    Birge, E.A. and Juday, C., 1929. Transmission of solar radiation by the waters of inland lakes. Trans. Wis. Acad. Sci. Arts, Lett., 24, p. 509.Google Scholar
  60. (60).
    Sauberer, F. and F. Ruttner, 1941. Die Strahlungsverhältnisse der Binnengewässer. Becker & Erler, Leipzig, p. 240.Google Scholar
  61. (61).
    Birge, E.A., 1916. The work of the wind in warming a lake. Trans. Wis. Acad. Sci. Arts, Lett., 18, pp. 341, 429, 495, 508.Google Scholar
  62. (62).
    Schmidt, W., 1925. Der Massenaustausch in freier Luft und verwandte Erscheinungen. Probleme der kosmischen Physik, Vol. 7, H. Grand, Hamburg.Google Scholar
  63. (63).
    Thoulet, J., 1894. Contribution à l’Etude des lacs des Vosges. Geography (Bull. Soc. Geogr., Paris ), 15.Google Scholar
  64. (64).
    Watson, E.R., 1904. Movements of the waters of Loch Ness as indicated by temperature observations. Geogr. J., 24, p. 430.Google Scholar
  65. (65).
    Wedderburn, E.M., 1907. An experimental investigation of the temperature changes occurring in fresh-water lochs. Proc. Roy. Soc. Edinburgh, 28, p. 2.Google Scholar
  66. (66).
    Wedderburn, E.M., 1911. The temperature seiche. I: Temperature observations in MadUsee Pomerania. II: Hydrodynamical theory of temperature oscillations in lakes. III: Calculation of the period of the temperature seiche in the MadUsee. Trans. Roy. Soc. Edinburgh, 47. p. 619.MATHGoogle Scholar
  67. (67).
    Wedderburn, E.M., 1912. Temperature observations in Loch Earn, with a further contribution to the hydrodynamical theory of the temperature seiche. Trans. Roy. Soc. Edinburgh, 48, pp. 629.Google Scholar
  68. (68).
    Birge, E.A., 1910. On the evidence for temperature seiches. Trans. Wis. Acad. Sci. Arts Lett., 16, p. 1005.Google Scholar
  69. (69).
    Mortimer, C.H., 1953. The resonant response of stratified lakes to wind. Schweiz. Z. Hydrol., 15, p. 94.Google Scholar
  70. (70).
    Johnson, O.H., 1946. Termisk hydrologiska studier i Sjbn Klämmingen. Geogr. Ann., Stockh., 1.Google Scholar
  71. (71).
    Mortimer, C.H. 1961. Motion in thermoclines. Verh. Internat. Verein. Limnol., 14, p. 79.Google Scholar
  72. (72).
    Heaps, N.S., 1961. Seiches in a narrow lake, uniformly stratified in three layers. Geophys. Suppl. J. Roy. Astronom. Soc., 5, p. 134.MATHGoogle Scholar
  73. (73).
    Heaps, N.S. and A.E. Ramsbottom, 1966. Wind effects on the water in a narrow two-layered lake. Phil. Trans. Roy. Soc. London, A, 259, p. 391.ADSGoogle Scholar
  74. (74).
    Mortimer, C.H., 1963. Frontiers in physical limnology with particular reference to long waves in rotating basins. Proc. 5th Conf. Great Lakes Res., Univ. Michigan, Great Lakes Div., Publ. No. 9, p. 9.Google Scholar
  75. (75).
    Thomson, W. (Lord Kelvin), 1879. On graviational oscillations of rotating water. Proc. Roy. Soc. Edinburgh, 10, p. 92.MATHGoogle Scholar
  76. (76).
    Poincaré, H., 1910. Théorie des marées. Leçons de mécanique céleste, 3, Paris.Google Scholar
  77. (77).
    Sverdrup, H.U., 1926. Dynamic of tides on the North Siberian shelf: result from the Maud Expedition. Geophys. Publ., 4.Google Scholar
  78. (78).
    Platzman, G.W., 1970. Ocean tides and related waves. Amer. Math. Soc., Lectures in Appl. Math., 14, p. 239.Google Scholar
  79. (79).
    Bennett, J., 1973. A theory of large amplitude Kelvin Waves. J. Phys. Oceanogr., 3, p. 57.ADSGoogle Scholar
  80. (80).
    Csanady, G., 1978. Water circulation and dispersal mechanisms, Chap. 2 in Lakes: Chemistry, Geology, Physics, A. Lerman, Ed., Springer-Verlag, New York.Google Scholar
  81. (81).
    Mortimer, C.H., 1968. Internal waves and associated currents observed in Lake Michigan during the summer of 1963. Univ. Wisconsin-Milwaukee, Center for Great Lakes Studies, Spec. Report No. 1.Google Scholar
  82. (82).
    Ayers, J.C., D.C. Chandler, G.H. Lauff, C.F. Powers and E.B. Henson, 1958. Currents and water masses of Lake Michigan. Univ. of Michigan, Great Lakes Res. Div., Publ. No. 3.Google Scholar
  83. (83).
    Gustafson, T. and B. Kullenberg, 1936. Untersuchungen von Trägheitsströmungen in der Ostsee. Svensk, Hydrogr. biol. Komm. Skr. Ny ser. Hydrogr. No. 13.Google Scholar
  84. (84).
    Mortimer, C.H., 1980. Inertial motion and related internal waves in Lake Michigan and Lake Ontario as responses to impulsive wind stress. I: Introduction, descriptive narrative and archive of IFYGL data. Univ. Wisconsin-Milwaukee, Center for Great Lakes Studies, Spec. Report No. 37.Google Scholar
  85. (85).
    Bauer, S.W., W.H. Graf, C.H. Mortimer and C. Perrinjaquet. Inertial motion in Lake Geneva (Léman). Arch. Met. Geophys. Biokl. Ser. A, 30, p. 289.Google Scholar
  86. (86).
    Platzman, G.W., 1958. A numerical computation of the surge of 26 June 1954 on Lake Michigan. Geophysica, 6, p. 407.Google Scholar
  87. (87).
    Verber, J.L., 1964. Initial current studies in Lake Michigan. Limnol. Oceanogr., 9, p. 426.Google Scholar
  88. (88).
    Verber, J.L., 1964. The detection of rotary currents and internal waves in Lake Michigan. Proc. 7th Conf. Great Lakes Res., Univ. Michigan, Great Lakes Res. Div., Publ. No. 11, p. 382.Google Scholar
  89. (89).
    U.S. Department of the Interior. Lake currents (Water Quality Investigation, Lake Michigan Basin). Federal Water Pollution Control Admin., Great Lakes Region. Chicago, IL, Tech. Rep., Nov. 1967, (Principal author and editor, J.L. Verber, other contributions by C.H. Mortimer and A. Okubo).Google Scholar
  90. (90).
    Mortimer, C.H., 1971. Large-scale oscillatory motions and seasonal temperature changes in Lake Michigan and Lake Ontario. Univ. Wisconsin-Milwaukee, Center for Great Lakes Stud-dies, Spec. Report No. 12, Part I: Text, Part II: Illustrations.Google Scholar
  91. (91).
    Maline, F.D., 1968. An analysis of current measurements in Lake Michigan. J. Geophys. Res., 73, p. 7065.ADSGoogle Scholar
  92. (92).
    Hollan, E., 1974. Strömungen im Bodensee. Teil 6. 6. Bericht Arbeitsgemeinschaft Wasserwerke Bodensee-Rhein (AWBR), Landesanstalt für Umweltschutz, Baden-Württemberg, Karlsruhe.Google Scholar
  93. (93).
    Horn, W., 1981. Zürichsee 1978: Physikalisch-limnologisches Messprogramm und Datensammlung. Internal Report No. 50, Versuchsanstalt für Wasserbau, Eidg. Techn. Hochschule, Zürich.Google Scholar
  94. (94.)
    Graf, W.H., C Perrinjaquet, S.W. Bauer, J.P. Prost and H. Girod, 1979. Measuring on Lake Geneva. Hydrodynamics of Lakes, Eds. Graf, W.H. and Mortimer, C.H.; Elsevier, Amsterdam.Google Scholar
  95. (95).
    Saylor, J.H. and G.S. Miller, 1979. Lake Huron winter currents. J. Geophys. Res., 84, p. 3237.ADSGoogle Scholar
  96. (96).
    Huang, J.C.K. and J.H. Saylor, 1982. Vorticity waves in a shallow basin. Dyn. Atmos. Oceans, 6, p. 177.ADSGoogle Scholar
  97. (97).
    Byron, J.W., Ed., 1976. International Field Year for the Great Lakes final Canadian data and information catalogue. Canadian IFYGL Data Bank, Canada Centre for Inland Waters, Department of Environment, Burlington, Ontario.Google Scholar
  98. (98).
    Hodge, W.T., 1978. International Field Year for the Great Lakes (IFYGL) data catalogue: United States data catalogue, NOAA Technical Memorandum EDS NCC-3, National Oceanic and Atmospheric Administration, U.S. Department of Com merce, Rockwille, MD, (The archive is located at the National Climatic Center, Ashville, NC).Google Scholar
  99. (99).
    Aubert, E.J. and T.L. Richards, Eds., 1981. IFYGL-The International Field Year for the Great Lakes, U.S. Dept. Commerce, National Oceanic and Atmospheric Admin., Great Lakes Environ. Res. Lab., Ann Arbor, MI, 48104, U.S.A.Google Scholar
  100. (100).
    Csanady, G.T., 1977. The coastal jet conceptual model in the dynamics of shallow seas, in The Seas: Ideas and Observations on Progress in the Seas. Ed.: Goldberg, E.D.; John Wiley & Sons, New York, 117.Google Scholar
  101. (101).
    Csanady, G.T., 1977. Intermittent “full” upwelling in Lake Ontario, J. of Geophys. Res., 82, p. 397.ADSGoogle Scholar
  102. (102).
    Csanady, G.T., 1974. Spring thermocline behavior in Lake Ontario during IFYGL. J. of Phys. Oceanogr., 4, p. 425.ADSGoogle Scholar
  103. (103).
    Csanady, G.T. and J.T, Scott, 1974. Baroclinic coastal jets in Lake Ontario during IFYGL. J. of Phys. Oceanogr., 4, p. 524.ADSGoogle Scholar
  104. (104).
    Csanady, G.T., 1976. Topographic waves in Lake Ontario. J. of Phys. Oceanogr., 6, p. 93.ADSGoogle Scholar
  105. (105).
    Simons, T.J., 1974. Verification of numerical models of Lake Ontario. Part I: circulation in spring and early summer. J. of Phys. Oceanogr., 4, p. 507.ADSGoogle Scholar
  106. (106).
    Simons, T.J., 1975. Verification of numerical models of Lake Ontario. Part II: stratified circulations and temperature changes. J. of Phys. Oceanogr., 5, p. 98.ADSGoogle Scholar
  107. (107).
    Simons, T.J., 1976. Verification of numerical models of Lake Ontario. Part III: long-term heat transport. J. of Phys. Oceanogr., 6, p. 372.ADSGoogle Scholar
  108. (108).
    Bennett, J.R., 1977. A three-dimensional model of Lake Ontario’s summer circulation. Part I: comparison with observations, J. of Phys. Oceanogr., 7, p. 591.ADSGoogle Scholar
  109. (109).
    Bennett, J.R., 1978. A three-dimensional model of Lake Ontario’s summer circulation. Part II: a diagnostic study. J. of Phys. Oceanogr., 8, p. 1095.ADSGoogle Scholar
  110. (110).
    Bennett, J.R. and E.J. Lindstrom, 1977. A simple model of Lake Ontario’s coastal boundary layer. J. of Phys. Oceanogr., 7, p. 620.ADSGoogle Scholar
  111. (111).
    Simons, T.J., 1980. Circulation models of lakes and inland seas. Can. Bull. Fish. Aquat. Sci., No. 203.Google Scholar
  112. (112).
    Pickett, R.L. and F.P. Richards, 1975. Lake Ontario mean temperatures and currents in July 1972. J. of Phys. Oceanogr., 5, p. 775.ADSGoogle Scholar
  113. (113).
    Pickett, R.L. and S. Bermick, 1977. Observed resultant circulation of Lake Ontario. Limnol. Oceanogr., 22, p. 1071.Google Scholar
  114. (114).
    Marmorino, G.O. and C.H. Mortimer, 1978. Internal waves observed in Lake Ontario during the International Field Year for the Great Lakes (IFYGL) 1972. Part II: spectral analysis and model decomposition. Univ. Wisconsin-Milwaukee, Center for Great Lakes Studies. Spec. Report No. 33.Google Scholar
  115. (115).
    Mortimer, C.H., 1977. Internal waves observed in Lake Ontario during the International Field Year for the Great Lakes (IFYGL) 1972. Part I: descriptive survey and preliminary interpretation of near-inertial oscillations in terms of linear channel-wave models. Univ. Wisconsin-Milwaukee, Center for great Lakes Studies, Spec. Report No. 32.Google Scholar
  116. (116).
    Simons, T.J., 1978. Generation and propagation of downwelling fronts. J. of Phys. Oceanogr., 8, p. 571.ADSGoogle Scholar
  117. (117).
    Schwab, D.J., 1977. Internal free oscillations in Lake Ontario. Limnol. Oceanogr., 22, p. 700.MathSciNetGoogle Scholar
  118. (118).
    Carmack, E.C., 1979. Combined influence of inflow and lake temperature on spring circulation in a riverine lake. J. Phys. Oceanogr., 9, p. 422.ADSGoogle Scholar
  119. (119).
    Farmer, D.M. and E.C. Carmack, 1981. Wind mixing and restrafication in a lake near the temperature of maximum density. J. Phys. Oceanogr., 11, p. 1516.ADSGoogle Scholar
  120. (120).
    Carmack, E.C. and D.M. Farmer, 1982. Cooling processes in deep, temperate lakes: a review with examples from two lakes in British Columbia. J. Mar. Res., 40 (Suppl.) p. 85.Google Scholar
  121. (121).
    Spigel, R.H. and J. Imberger, 1980. Classification of mixed-layer dynamics in lakes of small to medium size. J. of Phys. Oceanogr., 10, p. 1104.ADSGoogle Scholar
  122. (122).
    Imberger, J. and J.C. Patterson, 1981. A dynamic reservoir simulation model - DYRESM-5. Transport Models for Inland and Coastal Waters; Ed.: H.B. Fisher, Academic Press.Google Scholar
  123. (123).
    Jassby, A. and T. Powell, 1975. Vertical patterns of eddy diffusion during stratification in Castle Lake, California. Limnol. Oceanogr., 20, p. 530.Google Scholar
  124. (124).
    Murthy, C.R., 1976. Horizontal diffusion characteristics in Lake Ontario. J. of Phys. Oceanogr., 6, p. 76.MathSciNetADSGoogle Scholar
  125. (125).
    Edinger, J.E., D.K. Brady and J.C. Geyer, 1974. Heat exchange and transport in the environment. Electric Power Res. Inst., Publ. EPRI 74–049–00–3, The Johns Hopkins Univ., Dept. Geogr., Envir. Eng., Report No. 14.Google Scholar
  126. (126).
    Imberger, J. and P.F. Hamblin, 1982. Dynamics of lakes, reservoirs, and cooling ponds. Ann. Rev. Fluid Mech., 14, p. 153.ADSGoogle Scholar
  127. (127).
    Hutter, K., G. Raggio, C. Bucher and G. Salvadè, 1982. The surface seiches of Lake Zurich. Schweiz. Z. Hydrol., 44, p. 423.Google Scholar
  128. (128).
    Rutter, K., G. Raggio, C. Bucher, G. Salvadè and F. Zamboni, 1982. The surface seiches of Lake of Lugano. Schweiz. Z. Hydrol., 44, p. 455.Google Scholar
  129. (129).
    Bauer, S.W., 1983. Simulation of Lake Geneva seiches by irregular-grid finite-difference model. Mitt. Inst. Meereskunde, Univ. Hamburg, 26, p. 199.Google Scholar
  130. (130).
    Hollan, E., 1983. Erfahrungen mit der mathematische Modellierung grossräumiger Bewegungsvorgänge im Bodensee. Mitt. Inst. Meereskunde, Univ. Hamborg, 26, p. 154.Google Scholar
  131. (131).
    Allender, J.H., 1977. Comparison od model and observed currents in Lake Michigan. J. of Phys. Oceanogr., 7, p. 711.ADSGoogle Scholar
  132. (132).
    Allender, J.H. and J.H. Saylor, 1979. Model and observed circulation throughout the annual temperature cycle of Lake Michigan. J. of Phys. Oceanogr., 9, p. 573.ADSGoogle Scholar
  133. (133).
    Turner, J.S., 1981. Small-scale mixing processes. Evolution of Phys. Oceanogr. Eds.: Warren, B.A. and Wunsch, C.; MIT Press, Massachusetts.Google Scholar
  134. (134).
    Thorpe, S.A., 1977. Turbulence and mixing in a Scottish loch. Phil. Trans. Roy. Soc. London, A, 286, p. 125.ADSGoogle Scholar
  135. (135).
    Mortimer, C.H. and W. Horn, 1982. Internal wave dynamics and their implications for plankton biology in the Lake of Zurich. Vierteljahresschr. Naturforsch. Ges. Zürich, 127, p. 299.Google Scholar
  136. (136).
    Osborne, A.R. and T.L. Burch, 1980. Internal solitons in the Andaman Sea. Science, 208, p. 451.ADSGoogle Scholar
  137. (137).
    Ball, F.K., 1965. Second-class motions of a shallow fluid. J. Fluid Mech., 23, p. 545.MathSciNetADSGoogle Scholar
  138. (138).
    Mysak. L.A., 1980. Topographically trapped waves. Ann Rev. Fluid Mech., 12, p. 45.ADSGoogle Scholar
  139. (139).
    Saylor, J.H., J.C.K. Huang and R.O. Reid, 1980. Vortex modes in southern Lake Michigan. J. of Phys. Oceanogr. 10, p. 1814ADSGoogle Scholar
  140. (140).
    Schwab, D.J., 1984. The low-frequency response of Lake Michigan currents to time-dependent and oscillatory sind forcing, (submitted to J. of Phys. Oceanogr.).Google Scholar
  141. (141).
    Hsieh, W.W., 1982. On the detection of continental shelf waves. J. of Phys. Oceanogr., 12, p. 414.ADSGoogle Scholar
  142. (142).
    Bennett, J.R., 1971. Thermally driven lake currents during the spring and fall transition periods. Proc. 14th Conf. Great Lakes Research, Int. Assoc. for Great Lakes Research, 535.Google Scholar
  143. (143).
    Huang, J.C.K., 1971. The thermal current in Lake Michigan. J. of Phys. Ocenaogr., 1, p. 105.ADSGoogle Scholar
  144. (144).
    Mortimer, C.H., 1977. One of Lake Michigan’s responses to the sun, the wind, and the spinning earth. Forum 1977, Lectures Celebrating 20th Anniversary of College of Letters and Science, Univ. Wisconsin-Milwaukee.Google Scholar
  145. (145).
    Pickett, R.L., R.M. Partridge, A.H. Clites and J.E. Campbell, 1983. Great Lakes satellite-tracked drifters, (in press, J. Mar. Technol. Soc.).Google Scholar
  146. (146).
    Rao, D.B. and B.C. Doughty, 1981. Instability of coastal currents in the Great Lakes. Arch. Meteorol., Geophys., Bioklimatol., A, 30, p. 145.Google Scholar
  147. (147).
    Pingree, R.D., 1979. Baroclinic eddies bordering the Celtic Sea in late summer. J. Mar. Biol. Ass., U.K., 59, p. 689.Google Scholar
  148. (148).
    Griffiths, R.W. and P.F. Linden, 1981. The stability of buoyancy-driven coastal currents. Dynamics of Atmospheres and Oceans, 5, p. 281.ADSGoogle Scholar

Copyright information

© Springer-Verlag Wien 1984

Authors and Affiliations

  • C. H. Mortimer
    • 1
  1. 1.Center for Great Lakes StudiesUniversity of Wisconsin-MilwaukeeMilwaukeeUSA

Personalised recommendations