Advertisement

Some Aspects of Baroclinic Circulation Models

  • J. Kielmann
  • T. J. Simons
Part of the International Centre for Mechanical Sciences book series (CISM, volume 286)

Abstract

These lectures deal with problems of baroclinic circulation of lakes and inland seas. The term “circulation” needs further explanation: What is meant by circulation? Generally, we tend to define circulation as the rectified effects of all possible thermo-hydrodynamic processes in a lake or sea. Rectification is a consequence of averaging the possibly nonlinear processes over some predefined space and time scales. Thus, we speak of the “world ocean circulation” when time scales of some hundred years and space scales of some hundred kilometers are involved, and we talk about the “summer circulation of a lake” and may mean by it the average of several years of stratified circulation patterns in summer. However, even the response of a lake to a few days of wind forcing is often referred to as “circulation”; in this case it means that also wave processes of this time scale have to be included.

Keywords

Central Difference Scheme Baroclinic Mode Bornholm Basin Flux Corrected Transport Baroclinic Circulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennett, J.R., 1974. On the dynamics of wind-driven lake currents. J. Phys. Oceanogr. 4, pp. 400–414.CrossRefADSGoogle Scholar
  2. Book, D.L., J.P. Boris and K. Hain, 1975. Flux-corrected transport II: Generalization of the method. J. Comput. Phys. 18, pp. 248–283.CrossRefMATHADSGoogle Scholar
  3. Book, D.L., J.P. Boris and S.T. Zalesak, 1981. Flux corrected transport. In: Finite difference techniques for vectorized fluid dynamics circulations. (ed. D.L. Book), pp. 29–55. Springer Verlag Berlin, 226 p.Google Scholar
  4. Boris, J.P. and D.L. Book, 1973. Flux-corrected transport I: SHASTA, A fluid transport algorithm that works. J. Comput. Phys. 11, pp. 38–69.CrossRefMATHADSGoogle Scholar
  5. Bryan, K., 1966. A scheme for numerical integration of the equation of motion on an irregular grid free of nonlinear instability. Mon. Weather Rev. 94, pp. 39–40.CrossRefADSGoogle Scholar
  6. Bryan, K., 1969. A numerical method for the study of ocean circulation. J. Comput. Phys. 4, pp. 374–376.Google Scholar
  7. Charney, J.G., 1955. Generation of oceanic currents by wind. J. Mer. Res. 14, pp. 477–498.Google Scholar
  8. Csanady, G.T., 1967. Large-scale motion in the Great Lakes. J. Geophys. Res. 72, pp. 4151–4162.CrossRefADSGoogle Scholar
  9. Csanady, G.T., 1973. Transverse internal seiches in large oblong lakes and marginal seas. J. Phys. Oceanogr. 3, pp. 439–447.CrossRefADSGoogle Scholar
  10. Csanady, G.T. and J.T. Scott, 1974. Baroclinic coastal jets in Lake Ontario during IFYGL. J. Phys. Oceanogr. 4, pp. 524–541.CrossRefADSGoogle Scholar
  11. Crépon, M., 1967. Hydrodynamique marine en régime impulsionnel, Pt. 2. Cah. Oceanogr. 19, pp. 847–880.Google Scholar
  12. Freeman, N.G., A.M. Hale and M.B. Danard, 1972. A modified sigma equation approach to the numerical modelling of Great Lakes hydrodynamics. J. Geophys. Res. 77, pp. 1050–1060.CrossRefADSGoogle Scholar
  13. Haidvogel, D.B., A.R. Robinson and E.E. Schulman, 1950. Review. The accuracy, efficiency, and stability of three numerical models with application to open ocean problems. J. Comput. Phys., pp. 3411–3453.Google Scholar
  14. Haidvogel, D.B., 1981. A four-dimensional primitive equation model for coupled coastal-deep ocean studies. Technical Res. Woods Hole Oceanographic Institution No. WHOI-81–90.Google Scholar
  15. Harrison, D.E., 1978. On the diffusion parametrization of mesoscale eddy effects from a numerical ocean experiment. J. Phys. Oceanogr. 8, pp. 913–918.CrossRefADSGoogle Scholar
  16. Kielmann, J., 1981. Grundlagen und Anwendung eines numerischen Modells der geschichteten Ostsee. Ber. Inst. f. Meereskunde Kiel, No. 87a+b.Google Scholar
  17. Kielmann, J., 1983. The generation of eddy-like structures in a model of the Baltic Sea by low frequency wind forcing. Submitted to Tel-lus.Google Scholar
  18. Kowalik, Z. and A. Stâskiewicz, 1976. Diagnostic model of the circulation in the Baltic Sea. Dt. Hydrogr. Z. 29, pp. 239–250.CrossRefGoogle Scholar
  19. Krauss, W., 1979. A semi-spectral model for the computation of mesoscale processes in a stratified channel of variable depth. Dt. Hydr. Z. 32, pp. 174–189.MathSciNetGoogle Scholar
  20. Lam, D.C.L., 1975. Computer modelling of pollutant transports in Lake Erie. Proc. Int. Conf. on Math. Modeling of Environmental Problems. University of Southampton, U.K., 15 p.Google Scholar
  21. Lam, D.C.L., 1977. Comparison of finite element and finite difference methods for nearshore advection-diffusion transport models. pp. 115–129. In: Finite Elements in water resources. (Ed. J.W. Gray, G.F. Pinder and C.A. Brebbia ). Pentech Press London.Google Scholar
  22. Lam, D.C.L. and T.J. Simons, 1976. Numerical computations of advective and diffusive transports of chloride in Lake Erie during 1970. J. Fish. Res. Board Can., 33, pp. 537–549.CrossRefGoogle Scholar
  23. Lauwerier, H.A., 1961. The North Sea problem: non-stationary wind effects in a rectangular bay. Proc. K. Ned. Akad. Wet., A64, pp. 104122, pp. 418–431.MathSciNetGoogle Scholar
  24. Lax, P. and B. Wendrow, 1960. System of conservation laws. Commun. Pure Appl. Math., 13, pp. 217–237.MATHGoogle Scholar
  25. Lee, K.K. and J.A. Liggett, 1970. Computation for circulation in strati- fied lakes. J. Hydr. Div. ASCE, 96, pp. 2089–2115.Google Scholar
  26. Liggett, J.A. and Lee, K.K., 1971. Properties of circulation in stratified lakes. J. Hydr. Div. ASCE, 97, pp. 15–29.Google Scholar
  27. McNider, R.T. and J.J. O’Brien, 1973. A multi-layer transient model of coastal upwelling. J. Phys. Oceanogr., 3, pp. 258–273.CrossRefADSGoogle Scholar
  28. Mesinger, F. and A. Arakawa, 1976. Numerical methods used in atmospheric models. GARP Publ. Ser. No. 17 (W.M.O.), 64 p.Google Scholar
  29. Nowlin, W.D., 1967. A steady, wind-driven, frictional model of two moving layers in a rectangular ocean basin. Deep Sea Res., 14, pp. 89110.Google Scholar
  30. Peyret, R. and T.D. Taylor, 1981. Computational methods in fluid flow. Springer Verlag Berlin, 358 p.Google Scholar
  31. Phillips, N.A., 1960. Numerical weather prediction. Adv. Comput., 1, pp. 43–90.CrossRefGoogle Scholar
  32. Price, H.S., R.S. Varga and J.E. Warren, 1966. Application of oscillation matrices to diffusion convection equation. J. Math. Phys. (N.Y.) 45, pp. 301–311.MathSciNetMATHGoogle Scholar
  33. Richtmyer, R.D. and K.W. Morton, 1967. Difference methods for initial value problems. John Wiley & Sons, New York, 405 p.MATHGoogle Scholar
  34. Roache, P.J., 1972. Computational fluid dynamics. Albquerque, Hermosa, 434 p.MATHGoogle Scholar
  35. Sarkisyan, A.S., 1977. The diagnostic calculation of a large-scale oceanic circulation. The Sea, Vol. 6, pp. 363–458. ( Ed. E.D. Goldberg). John Wiley & Sons, Inc., New York.Google Scholar
  36. Simons, T.J., 1972. Development of numerical models of Lake Ontario. Part 2. Proc. Conf. Great Lakes Res. IAGLR, 15, pp. 655–672.Google Scholar
  37. Simons, T.J., 1974. Verification of numerical models of Lake Ontario. I. Circulation in spring and early summer. J. Phys. Oceanogr., pp. 507–523.Google Scholar
  38. Simons, T.J., 1978a. Wind-driven circulations in the south-west Baltic. Tellus 30, pp. 272–283.CrossRefADSGoogle Scholar
  39. Simons, T.J., 1978b. Generation and propagation of downwelling fronts. J. Phys. Oceanogr., 8, pp. 571–581.CrossRefADSGoogle Scholar
  40. Simons, T.J., 1980. Circulation models of lakes and inland seas. Can. Bull. Fisheries and Aquatic Sci., No. 203, 145 p.Google Scholar
  41. Struve, S., 1978. Transport und Vermischung einer passiven Beimengung in einem Madium mit einem vorgegebenen Geschwindigkeitsfeld. Ber. Inst. f. Meereskunde Kiel, No. 57.Google Scholar
  42. Taylor, G.I., 1922. Tidal oscillations in gulfs and rectangular basins. Proc. London Math. Soc. Ser., 2 (20), pp. 148–181.CrossRefGoogle Scholar
  43. Weenink, M.P.H., 1958. A theory and method of calculation of wind effects on sea levels in a partly enclosed sea. R. Neth. Meteor. Inst. Med. Verh., 73, 111 p.Google Scholar
  44. Welander, P., 1968. Wind-driven circulation in one-and two-layer oceans of variable depth. Tellus 20, pp. 1–15.CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Wien 1984

Authors and Affiliations

  • J. Kielmann
    • 1
  • T. J. Simons
    • 2
  1. 1.Institut für Meereskunde an der Universität KielW. Germany
  2. 2.Canada Centre for Inland WatersBurlingtonCanada

Personalised recommendations