Skip to main content

Some Aspects of Baroclinic Circulation Models

  • Chapter
Book cover Hydrodynamics of Lakes

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 286))

Abstract

These lectures deal with problems of baroclinic circulation of lakes and inland seas. The term “circulation” needs further explanation: What is meant by circulation? Generally, we tend to define circulation as the rectified effects of all possible thermo-hydrodynamic processes in a lake or sea. Rectification is a consequence of averaging the possibly nonlinear processes over some predefined space and time scales. Thus, we speak of the “world ocean circulation” when time scales of some hundred years and space scales of some hundred kilometers are involved, and we talk about the “summer circulation of a lake” and may mean by it the average of several years of stratified circulation patterns in summer. However, even the response of a lake to a few days of wind forcing is often referred to as “circulation”; in this case it means that also wave processes of this time scale have to be included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bennett, J.R., 1974. On the dynamics of wind-driven lake currents. J. Phys. Oceanogr. 4, pp. 400–414.

    Article  ADS  Google Scholar 

  • Book, D.L., J.P. Boris and K. Hain, 1975. Flux-corrected transport II: Generalization of the method. J. Comput. Phys. 18, pp. 248–283.

    Article  MATH  ADS  Google Scholar 

  • Book, D.L., J.P. Boris and S.T. Zalesak, 1981. Flux corrected transport. In: Finite difference techniques for vectorized fluid dynamics circulations. (ed. D.L. Book), pp. 29–55. Springer Verlag Berlin, 226 p.

    Google Scholar 

  • Boris, J.P. and D.L. Book, 1973. Flux-corrected transport I: SHASTA, A fluid transport algorithm that works. J. Comput. Phys. 11, pp. 38–69.

    Article  MATH  ADS  Google Scholar 

  • Bryan, K., 1966. A scheme for numerical integration of the equation of motion on an irregular grid free of nonlinear instability. Mon. Weather Rev. 94, pp. 39–40.

    Article  ADS  Google Scholar 

  • Bryan, K., 1969. A numerical method for the study of ocean circulation. J. Comput. Phys. 4, pp. 374–376.

    Google Scholar 

  • Charney, J.G., 1955. Generation of oceanic currents by wind. J. Mer. Res. 14, pp. 477–498.

    Google Scholar 

  • Csanady, G.T., 1967. Large-scale motion in the Great Lakes. J. Geophys. Res. 72, pp. 4151–4162.

    Article  ADS  Google Scholar 

  • Csanady, G.T., 1973. Transverse internal seiches in large oblong lakes and marginal seas. J. Phys. Oceanogr. 3, pp. 439–447.

    Article  ADS  Google Scholar 

  • Csanady, G.T. and J.T. Scott, 1974. Baroclinic coastal jets in Lake Ontario during IFYGL. J. Phys. Oceanogr. 4, pp. 524–541.

    Article  ADS  Google Scholar 

  • Crépon, M., 1967. Hydrodynamique marine en régime impulsionnel, Pt. 2. Cah. Oceanogr. 19, pp. 847–880.

    Google Scholar 

  • Freeman, N.G., A.M. Hale and M.B. Danard, 1972. A modified sigma equation approach to the numerical modelling of Great Lakes hydrodynamics. J. Geophys. Res. 77, pp. 1050–1060.

    Article  ADS  Google Scholar 

  • Haidvogel, D.B., A.R. Robinson and E.E. Schulman, 1950. Review. The accuracy, efficiency, and stability of three numerical models with application to open ocean problems. J. Comput. Phys., pp. 3411–3453.

    Google Scholar 

  • Haidvogel, D.B., 1981. A four-dimensional primitive equation model for coupled coastal-deep ocean studies. Technical Res. Woods Hole Oceanographic Institution No. WHOI-81–90.

    Google Scholar 

  • Harrison, D.E., 1978. On the diffusion parametrization of mesoscale eddy effects from a numerical ocean experiment. J. Phys. Oceanogr. 8, pp. 913–918.

    Article  ADS  Google Scholar 

  • Kielmann, J., 1981. Grundlagen und Anwendung eines numerischen Modells der geschichteten Ostsee. Ber. Inst. f. Meereskunde Kiel, No. 87a+b.

    Google Scholar 

  • Kielmann, J., 1983. The generation of eddy-like structures in a model of the Baltic Sea by low frequency wind forcing. Submitted to Tel-lus.

    Google Scholar 

  • Kowalik, Z. and A. Stâskiewicz, 1976. Diagnostic model of the circulation in the Baltic Sea. Dt. Hydrogr. Z. 29, pp. 239–250.

    Article  Google Scholar 

  • Krauss, W., 1979. A semi-spectral model for the computation of mesoscale processes in a stratified channel of variable depth. Dt. Hydr. Z. 32, pp. 174–189.

    MathSciNet  Google Scholar 

  • Lam, D.C.L., 1975. Computer modelling of pollutant transports in Lake Erie. Proc. Int. Conf. on Math. Modeling of Environmental Problems. University of Southampton, U.K., 15 p.

    Google Scholar 

  • Lam, D.C.L., 1977. Comparison of finite element and finite difference methods for nearshore advection-diffusion transport models. pp. 115–129. In: Finite Elements in water resources. (Ed. J.W. Gray, G.F. Pinder and C.A. Brebbia ). Pentech Press London.

    Google Scholar 

  • Lam, D.C.L. and T.J. Simons, 1976. Numerical computations of advective and diffusive transports of chloride in Lake Erie during 1970. J. Fish. Res. Board Can., 33, pp. 537–549.

    Article  Google Scholar 

  • Lauwerier, H.A., 1961. The North Sea problem: non-stationary wind effects in a rectangular bay. Proc. K. Ned. Akad. Wet., A64, pp. 104122, pp. 418–431.

    MathSciNet  Google Scholar 

  • Lax, P. and B. Wendrow, 1960. System of conservation laws. Commun. Pure Appl. Math., 13, pp. 217–237.

    MATH  Google Scholar 

  • Lee, K.K. and J.A. Liggett, 1970. Computation for circulation in strati- fied lakes. J. Hydr. Div. ASCE, 96, pp. 2089–2115.

    Google Scholar 

  • Liggett, J.A. and Lee, K.K., 1971. Properties of circulation in stratified lakes. J. Hydr. Div. ASCE, 97, pp. 15–29.

    Google Scholar 

  • McNider, R.T. and J.J. O’Brien, 1973. A multi-layer transient model of coastal upwelling. J. Phys. Oceanogr., 3, pp. 258–273.

    Article  ADS  Google Scholar 

  • Mesinger, F. and A. Arakawa, 1976. Numerical methods used in atmospheric models. GARP Publ. Ser. No. 17 (W.M.O.), 64 p.

    Google Scholar 

  • Nowlin, W.D., 1967. A steady, wind-driven, frictional model of two moving layers in a rectangular ocean basin. Deep Sea Res., 14, pp. 89110.

    Google Scholar 

  • Peyret, R. and T.D. Taylor, 1981. Computational methods in fluid flow. Springer Verlag Berlin, 358 p.

    Google Scholar 

  • Phillips, N.A., 1960. Numerical weather prediction. Adv. Comput., 1, pp. 43–90.

    Article  Google Scholar 

  • Price, H.S., R.S. Varga and J.E. Warren, 1966. Application of oscillation matrices to diffusion convection equation. J. Math. Phys. (N.Y.) 45, pp. 301–311.

    MathSciNet  MATH  Google Scholar 

  • Richtmyer, R.D. and K.W. Morton, 1967. Difference methods for initial value problems. John Wiley & Sons, New York, 405 p.

    MATH  Google Scholar 

  • Roache, P.J., 1972. Computational fluid dynamics. Albquerque, Hermosa, 434 p.

    MATH  Google Scholar 

  • Sarkisyan, A.S., 1977. The diagnostic calculation of a large-scale oceanic circulation. The Sea, Vol. 6, pp. 363–458. ( Ed. E.D. Goldberg). John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Simons, T.J., 1972. Development of numerical models of Lake Ontario. Part 2. Proc. Conf. Great Lakes Res. IAGLR, 15, pp. 655–672.

    Google Scholar 

  • Simons, T.J., 1974. Verification of numerical models of Lake Ontario. I. Circulation in spring and early summer. J. Phys. Oceanogr., pp. 507–523.

    Google Scholar 

  • Simons, T.J., 1978a. Wind-driven circulations in the south-west Baltic. Tellus 30, pp. 272–283.

    Article  ADS  Google Scholar 

  • Simons, T.J., 1978b. Generation and propagation of downwelling fronts. J. Phys. Oceanogr., 8, pp. 571–581.

    Article  ADS  Google Scholar 

  • Simons, T.J., 1980. Circulation models of lakes and inland seas. Can. Bull. Fisheries and Aquatic Sci., No. 203, 145 p.

    Google Scholar 

  • Struve, S., 1978. Transport und Vermischung einer passiven Beimengung in einem Madium mit einem vorgegebenen Geschwindigkeitsfeld. Ber. Inst. f. Meereskunde Kiel, No. 57.

    Google Scholar 

  • Taylor, G.I., 1922. Tidal oscillations in gulfs and rectangular basins. Proc. London Math. Soc. Ser., 2 (20), pp. 148–181.

    Article  Google Scholar 

  • Weenink, M.P.H., 1958. A theory and method of calculation of wind effects on sea levels in a partly enclosed sea. R. Neth. Meteor. Inst. Med. Verh., 73, 111 p.

    Google Scholar 

  • Welander, P., 1968. Wind-driven circulation in one-and two-layer oceans of variable depth. Tellus 20, pp. 1–15.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Wien

About this chapter

Cite this chapter

Kielmann, J., Simons, T.J. (1984). Some Aspects of Baroclinic Circulation Models. In: Hutter, K. (eds) Hydrodynamics of Lakes. International Centre for Mechanical Sciences, vol 286. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2634-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2634-9_7

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-81812-1

  • Online ISBN: 978-3-7091-2634-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics