Advertisement

Numerical Modelling of Barotropic Circulation Processes

  • Jürgen Sündermann
Part of the International Centre for Mechanical Sciences book series (CISM, volume 286)

Abstract

The dynamics of lakes has a hydrodynamic and a thermodynamic component. By neglection of the latter, assuming a thermally homogeneous water body, a barotropic model is obtained. It is characterized by vanishing horizontal density gradients; the surface slope alone determines the horizontal pressure gradients (H1, section 1)*). Vertical density gradients can be considered by a barotropic multi-layer model (H1, section 5).

Keywords

Finite Difference Method Passive Tracer Barotropic Model Elbe Estuary Flood Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, M.B., 1974. Continuous flows, discontinuous flows, and numerical analysis. J. Hydr. Res. 12, 4.Google Scholar
  2. Backhaus, J.O., 1983. A semi-implicit primitive equation model for shelf seas, outline and practical aspects of the scheme. Cont. Shelf Res., special issue on JONSMOD 82.Google Scholar
  3. Backhaus, J.O., 1983. A semi-implicit scheme for the shallow water equations for application to shelf sea modelling. In press.Google Scholar
  4. Boris, J.P. and D.L. Book, 1973. Flux corrected transport. I. Shasta. A fluid transport algorithm that works. J. Comp. Phys. 10.Google Scholar
  5. Bork, I. and E. Maier-Reimer, 1978. On the spreading of power plant cooling water in a tidal river applied to the river Elbe. Adv. Wat. Res. 1.Google Scholar
  6. Bowden, K.F., 1963. The mixing processes in a tidal estuary. J. Air Wat. Poll. 7.Google Scholar
  7. Bugliarello, G. and E.D. Jackson, 1964. Random walk study of convective diffusion. ASCE J. Eng. Mech. Div. 94.Google Scholar
  8. Crank, J. and P. Nicholson, 1947. A practical method for numerical integration of solutions of partial differential equations of heat conduction type. Proc. Cambr. Phil. Soc. 43, 50.Google Scholar
  9. Duwe, K., 1982. Brackwasserzone eines Tideflusses. Unpublished internal report, Institut für Meereskunde, Univ. Hamburg.Google Scholar
  10. Duwe, K. and R. Hewer, 1982. Ein semi-implizites Gezeitenmodell für Wattengebiete. Dt. Hydr. Zeitschr. 35.Google Scholar
  11. Duwe, K., R. Hewer and J.O. Backhaus, 1983. Results of a semi-implicit two-step method for the simulation of markedly nonlinear flow. Cont. Shelf Res., special issue on JONSMOD ‘82.Google Scholar
  12. Egan, B.A. and J.R. Mahoney, 1972. Numerical modelling of advection and diffusion of urban area source pollutants. J. Appl. Met. 11.Google Scholar
  13. Einstein, A., 1905. Ueber die von der molekular-kinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 4.Google Scholar
  14. Gorenflo,.R., 1968. Differenzenschemata vom Irrfahrttypus für die Differentialgleichung von Fokker-Planck-Kolmogorov. Zeitschr. ang. Math. Mech. 69.Google Scholar
  15. Grotjahn, R. and J.J. O’Brien, 1976. Some inaccuracies in finite differencing hyperbolic equations. Monthly Weath. Rev. 104.Google Scholar
  16. Hansen, W., 1956. Theorie zur Errechnung des Wasserstandes und der Strömungen in Randmeeren nebst Anwendungen. Tellus B.Google Scholar
  17. Kautsky, H., 1973. The distribution of the radio nuclide Caesium 137 as an indicator for North Sea water mass transport. Dt. Hydrogr. Zeitschr. 26.Google Scholar
  18. Lax, P.D., 1954. Weak solutions of nonlinear hyperbolic equations and their numerical applications. Comm. Pure App. Math. 7.Google Scholar
  19. Maier-Reimer, E., 1973. Hydrodynamisch-numerische Untersuchungen zu horizontalen Ausbreitungs- und Transportvorgängen in der Nordsee. Mitt. Inst. Meereskd. Univ. Hamburg 21.Google Scholar
  20. Maier-Reimer, E., 1975. Zum Einfluss eines mittleren Windschubes auf die Restströme der Nordsee. Dt. Hydrogr. Zeitschr. 28.Google Scholar
  21. Maier-Reimer, E. and J. Sündermann, 1982. On tracer methods in computational hyârodynamics. In: Abbott, M.B. and J. Cunge (eds.) Engineering applications of computational hydraulics. Pitman Boston-London-Melbourne.Google Scholar
  22. Müller-Navarra, S., 1983. Simulation von Bewegungsvorgängen im Uebergangsgebiet zwischen Nordsee und Ostsee. Diploma thesis, Univ. of Hamburg.Google Scholar
  23. Richtmyer, R.D. and K.W. Morton, 1967. Difference methods for initial value problems. Interscience Publishers New York.Google Scholar
  24. Simons, T.J., 1980. Circulation models of lakes and inland seas. Can. Bull. Fish. Aquat. SCI 203.Google Scholar
  25. Sündermann, J., 1971. Die hydrodynamisch-numerische Berechnung der Vertikalstruktur von Bewegungsvorgängen in Kanälen und Becken. Mitt. Inst. Meereskd. Univ. Hamburg 19.Google Scholar
  26. Sündermann, J., 1979. Numerical modelling of circulation in lakes. In: Graf, W.H. and C.H. Mortimer (eds.) Hydrodynamics of lakes. Elsevier Amsterdam-Oxford-New York.Google Scholar

Copyright information

© Springer-Verlag Wien 1984

Authors and Affiliations

  • Jürgen Sündermann
    • 1
  1. 1.Institute of OceanographyUniversity of HamburgHamburg 13Federal Republic of Germany

Personalised recommendations